MAR IVANIOS COLLEGE (AUTONOMOUS)

Affiliated to the

University of Kerala Thiruvananthapuram

Kerala

SCHEME AND SYLLABUS FOR THE FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP)

MAJOR DISCIPLINE MATHEMATICS (Aided)

(With effect from 2024 Admissions)

Approved by the Board of Studies in

Mathematics and Statistics

CONTENTS							
Sl. No.	Content Title	Page					
1	Preamble	4					
2	Graduation Attributes and Programme Outcomes (POs)	6					
3	Programme Specific Outcomes (PSOs)	11					
4	4 Course and Credit Structure of FYUGP						
5	5 Course Participation/Attendance						
6	6 Assessment and Evaluation						
7	Letter Grades and Grade Point	15					
8	Computation of SGPA and CGPA	16					
9	List of Courses	18					
	SEMESTER – I	I					
10	Foundations of Mathematics - I	22					
11	Mathematics for Physical Sciences – I	27					
12	Mathematics for Life Sciences - I						
13	Mathematics for Social Sciences – I	39					
14	Mathematical Methods for Finance - I	44					
15	Calculus of one and more than one variable	49					
16	Quantitative Techniques and Aptitude (Basic Mathematics for Competitive Examinations)	56					
	SEMESTER – II						
17	Foundations of Mathematics - II	61					
18	Mathematics for Physical Sciences – II	67					
19	Mathematics for Life Sciences - II	73					
20	Mathematics for Social Sciences - II	79					
21	Mathematical Methods for Finance - II	84					
22	Linear Algebra and Numerical Approximations	88					
23	Data Interpretation and Logical Reasoning	93					
	SEMESTER – III						
24	Advanced Calculus	97					
25	Mathematics for Physical Sciences - III	101					
26	Mathematics for Life Sciences - III	106					

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

27	Basic Operations Research	111			
28	Statistics and Optimization	115			
29	Elementary Number Theory and Cryptography	120			
SEMESTER – IV					
30	Linear Algebra	125			
31	Vector Calculus	131			
32	Theory of Equations	135			
33	Python Programming and LaTeX	141			
34	Internship				
	SEMESTER – V				
35	Real Analysis – I	146			
36	Complex Analysis	151			
37	Abstract Algebra - Group Theory	156			
38	Numerical Methods	160			
39	Graph Theory	165			
40	Data Analysis using Python	169			
	SEMESTER – VI				
41	Real Analysis- II				
42	Operations Research	174			
43	Abstract Algebra - Ring Theory	179			
44	Differential Equations	183			
45	Integral Transforms	187			
46	46 Introduction to Machine Learning				
	SEMESTER – VII				
47	Advanced Linear Algebra	201			
48	Advanced Real Analysis	206			
49	Topology	212			
50	Advanced Topics in Graph Theory	217			
51	Ordinary Differential Equations	222			
52	Abstract Algebra – Field Theory	227			
53	Measure Theory and Integration	232			
54	Partial Differential Equations	237			
	SEMESTER – VIII				
55	Research Project/Internship Project				

PREAMBLE

National Education Policy (NEP 2020) envisions 'higher education as playing an extremely important role in promoting human as well as societal wellbeing and in developing India as envisioned in its Constitution - a democratic, just, socially conscious, cultured, and humane nation upholding liberty, equality, fraternity, and justice for all' (Section 9.1). NEP also expects higher education 'to develop good, thoughtful, well-rounded, and creative individuals, enabling an individual to study one or more specialized areas of interest at a deep level, and also develop character, ethical and Constitutional values, intellectual curiosity, scientific temper, creativity, spirit of service, and 21st century capabilities across a range of disciplines including sciences, social sciences, arts, humanities, languages, as well as professional, technical, and vocational subjects' (Section 9.1.1). Hence, more than the creation of greater opportunities for individual employment, higher education represents the key to more vibrant, socially engaged, cooperative communities and a happier, cohesive, cultured, productive, innovative, progressive, and prosperous nation. (Section 9.1.3). NEP also identifies some of the major problems currently faced by the higher education system in India (Section 9.2) and envisions a complete overhaul and re-energizing of the higher education system to overcome these challenges and thereby deliver high-quality higher education, with equity and inclusion (Section 9.3). One of the major changes which the policy proposes is moving towards a more multidisciplinary undergraduate education (Section 9.3(b)) which develops all capacities of human beings -intellectual, aesthetic, social, physical, emotional, and moral in an integrated manner (Section 11.3). In order to achieve this in its full potential, NEP visions the adjusting of the structure and lengths of degree programmes accordingly. "The undergraduate degree will be of either 3 or 4-year duration, with multiple exit options within this period, with appropriate certifications, e.g., a certificate after completing 1 year in a discipline or field including vocational and professional areas, or a diploma after 2 years of study, or a Bachelor 's degree after a 3-year programme. The 4year multidisciplinary Bachelor's programme, however, shall be the preferred option since it allows the opportunity to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per the choices of the student." (Section 11.9)

In accordance with the NEP 2020, the UGC formulated a new student-centric "Curriculum

and Credit Framework for Undergraduate Programmes (CCFUP)" incorporating a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options and establishing three Broad Pathways,

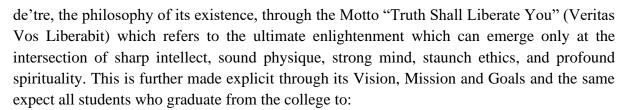
- (a) 3-year UG Degree,
- (b) 4-year UG Degree (Honours), and
- (c) 4-year UG Degree (Honours) with Research)

Accordingly, the Kerala Higher Education Reforms Commission 2022, headed by Prof Shyam B. Menon, has recommended a comprehensive reform in the

undergraduate curriculum with the adoption of the 4-year undergraduate Programmes, which will bring undergraduate education in Kerala at par with the universities abroad. Consequently, Kerala State Curriculum Committee for Higher Education 2023 has been constituted, with Dr Suresh Das as Chairman, and they have proposed a model Kerala State Higher Education Curriculum framework for undergraduate education.

The University of Kerala has decided to introduce the Four Year Under Graduate Programmes (FYUGP) from the academic year 2024-2025 onwards in its teaching departments and all affiliated colleges, and has issued many draft documents and conducted college level awareness programmes about the same.

Mar Ivanios College, by virtue of its autonomy status, conferred in 2014 and extended in 2022, vide University Grants Commission (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2023, has the power to review existing courses/programmes and, restructure, redesign and prescribe its own courses/programmes of study and syllabi and to formulate new courses/programmes within the nomenclature specified by UGC as per the Specification of Degrees 2014 as amended from time to time. Accordingly, the Board of Studies in Mathematics and Statistics of Mar Ivanios College (Autonomous) proposed the implementation of the FYUGP scheme with effect from 2024 admission onwards and prepared the scheme and syllabi through many of the meetings and discussions. The Academic Council of the college which met on 30th April gave discussed the proposal and syllabi in detail and approved the same to be implemented from 2024 admission onwards, subject to the final directions of the University of Kerala.


The salient features of the syllabus prepared and presented by the Board of Studies include the following:

- The curriculum is designed based on Outcome Based Education (OBE) approach.
- The curriculum follows Choice-Based Credit System (CBCS): This system allows students to select courses from a prescribed list. A specified number of credits must be earned to award the degree
- The curriculum follows the basic framework, course wise/programme-wise minimum/maximum credits set by the University of Kerala for FYUGP and abides by the basic mandatory principles of Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024.
- Serve as a bridge between academic knowledge and real-world application, promoting lifelong learning and meaningful contributions."

- Encouraging students to engage with the local community through mathematics outreach programs, tutoring initiatives, or collaborative projects with schools or community organizations.
- Incorporating elements of other disciplines like computer science, physics and economics to showcase the diverse applications and connections of mathematics
- Structuring the course around project-based learning modules where students tackle open-ended mathematical problems, fostering independence, creativity, and teamwork.
- Integrating the use of mathematical software and tools into the curriculum, such as GeoGebra, Python, and LaTeX to enhance computational skills and problem-solving abilities.
- Emphasize problem-solving skills over memorization by presenting students with challenging problems that demand critical thinking and creativity.
- Partnering with industry players to offer real-world case studies, internships, or projects, giving students practical experience and exposure to potential career paths
- prepares students for a wide range of jobs and keeps up with current trends to ensure graduates are ready for today's workforce.
- Study tours offer unique chances to delve into real-world applications of mathematical concepts, enhancing their understanding and honing practical problem-solving skills across diverse industries and research environments.
- Guide students in developing these attributes uniquely, fostering personal growth and success in various aspects of life.

Graduate Attributes and Programme Outcomes (POs):

The National Higher Education Qualification Framework (NHEQF) envisages that students on completion of a programme of study must possess and demonstrate the expected graduate profile/attributes acquired through one or more modes of learning. The graduate profile/attributes indicate the quality and feature or characteristics of the graduate of a programme of study, including learning outcomes relating to the disciplinary area(s) relating to the chosen field(s) of learning and generic learning outcomes that are expected to be acquired by a graduate on completion of the programme(s) of study. The graduate profile/attributes include capabilities that help widen the current knowledge base and skills, gain and apply new knowledge and skills, undertake future studies independently, perform well in a chosen career, and play a constructive role as a responsible citizen in the society. The graduate profile/attributes are acquired incrementally and describe a set of competencies that are transferable beyond the study of a particular subject/disciplinary area and programme contexts in which they have been developed. Graduate profile/attributes are fostered through meaningful learning experiences made available through the curriculum and learning experience, the total college/university experience, and a process of critical and reflective thinking. Mar Ivanios College (Autonomous) is fully committed to ensuring the attainment of the necessary graduation attributes by the students. The college has clearly defined its raison

- Have inculcated "the values of truth and charity for the protection and promotion of human dignity and of a cultural heritage, through teaching, research, and extension activities dedicated to society";
- Be co-creators of a vibrant academic community known for its innovation, intellectual rigour and social commitment;
- Be "intellectually trained, morally upright, socially committed, spiritually inspired and ecologically conscious young men and women who would be dedicated to working for the good of society, the nation and the world";
- Have acquired "global competencies and skills";
- Have inculcated a sense of harmony, equality and fraternity among youth, transcending religious, linguistic, regional or sectional diversities; and
- Have developed "scientific temper, humanism and the spirit of inquiry and reform".

Programme Outcomes are the expected student attributes achieved by a student after the student completes the FYUGP from any of the streams/pathways.

The Programme Outcomes (POs) for the FYUGP programmes across all streams and pathways, based on the above core philosophy, and in consonance with the National Higher Education Qualifications Framework (NHEQF) are given below:

By the end of the Four-Year Under-Graduate Programme, students will:

PO1	Demonstrate the acquisition of all necessary knowledge and skills within their disciplinary/ multi-disciplinary areas of learning. These include the acquisition of:
	• comprehensive knowledge and coherent understanding of their chosen disciplinary/ interdisciplinary areas of study, their linkages with related fields, and the awareness of current trends in their chosen area of study;
	• essential knowledge for skilled work in chosen field(s), including self- employment and entrepreneurship skills;
	 proficiency in specialized areas within chosen fields of study, encompassing diverse practical skills applicable to different situations within those fields;
	• the ability to apply learned knowledge to novel situations, solve problems, and relate concepts to real-world scenarios rather than just

	memorizing curriculum content.
PO2	Acquire problem-solving, critical thinking, analytical reasoning skills and demonstrate creativity in their thought processes by demonstrating the ability
	 to: solve different kinds of problems in familiar and non-familiar contexts both within and outside their disciplinary/ multidisciplinary areas of learning; apply analytic thought to a body of knowledge, including the analysis and evaluation of policies, and practices, as well as evidence, arguments, claims, and beliefs; analyse and synthesize data from a variety of sources and draw valid conclusions and support them with evidence and examples. the ability to plan, execute and report the results of an experiment or investigation; adhere to scientific temper and ethics in their thought process; adopt innovative, imaginative, lateral thinking, interpersonal skills and emotional intelligence; and
	• incubate entrepreneurial and start-up ideas.
PO3	Develop a profound environmental dedication by fostering ecological awareness and engaging in actions that promote sustainable development by achieving the ability to
	 recognize environmental and sustainability issues, and participate in actions to promote sustainable development as well as mitigate the effects of environmental degradation, climate change, and pollution; contribute to effective waste management, conservation of biological diversity, management of biological resources and biodiversity, forest and wildlife conservation, sustainable development and living, and the preservation of life in all forms. participate in community-engaged services/ developmental activities and
	thus exemplify the ideals of community engagement and service learning and deep social commitment.
PO4	Accomplish perfect communication, teamwork, and leadership skills, particularly in academic and professional settings, while demonstrating nuance and attention to etiquette in all communicative contexts. This will enable them to:
	 listen carefully, and read texts and research documents, and present complex information with clarity and precision to different audiences; express thoughts and ideas and communicate effectively through speech and

	 writing using appropriate media; communicate using language which is respectful of gender and minority orientations; act together as a group or a team in the interests of a common cause and working efficiently as a member of a team; inspire the team with a vision to achieve a stated goal, and use management skills to guide the team in the right direction.
PO5	 Acquire the necessary skills, including 'learning to learn' skills, and foster innovative ideas to improve competence and employability, keeping pace with the evolving global landscape and technological advancements by demonstrating the ability to: pursue learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social, and cultural objectives, and adapting to changing trades and demands of the workplace, including adapting to the changes in work processes in the context of the fourth industrial revolution, through knowledge/ skill development/reskilling; work independently, identify appropriate resources required for further learning; acquire organizational and time management skills to set self-defined goals and targets with timelines; be a proactive life-long learner. use ICT in a variety of learning and work situations; access, evaluate, and use a variety of relevant information sources, and use appropriate software for analysis of data; navigate cyberspaces by following appropriate ethical principles and cyber etiquette. use cutting edge AI tools with equal commitment to efficiency and ethics. think 'out of the box' and generate solutions to complex problems in unfamiliar contexts;
PO6	 Develop research-related skills including the ability to conceptualize research hypotheses/projects and adopt suitable tools and methodologies for analysis with: a keen sense of observation, inquiry, and capability for asking relevant/ appropriate research questions; the ability to problematize, synthesize, and articulate issues and design research proposals; the ability to define problems, formulate appropriate and relevant research questions, formulate hypotheses, test hypotheses using quantitative and

	 qualitative data, establish hypotheses, make inferences based on the analysis and interpretation of data, and predict cause-and effect relationships; the capacity to develop appropriate methodology and tools for data collection; the appropriate use of statistical and other analytical tools and techniques; the ability to plan, execute and report the results of an experiment or investigation; the ability to acquire the understanding of basic research ethics and skills in practicing/doing ethics in the field/ in personal research work, regardless of the funding authority or the field of study
PO7	Assimilate a sound value system, a sense of autonomy, multicultural competence, social commitment, and the spirit of inclusivity and empathy by imbibing the spirit and the holistic ethos of the 'Multi-Dimensional Ivanian' (MDI) approach. This will enable them to:
	 embrace and practice constitutional, humanistic, ethical, and moral values in life, including universal human values of integrity, truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values; identify ethical issues related to work, follow ethical practices and be objective, unbiased, and truthful actions in all aspects of work, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights; exercise responsibility and demonstrate accountability in applying knowledge and/or skills in work and/or learning contexts appropriate for the level of the qualification, including ensuring safety and security at workplaces; practice responsible global citizenship required for responding to contemporary global challenges, enabling learners to become aware of and understand global issues and to become active promoters of more peaceful, tolerant, inclusive, secure, and sustainable societies; effectively engage in a multicultural group/society and interact respectfully with diverse groups; identify with or understand the perspective, experiences, or points of view and emotions of another individual or group. demonstrate gender sensitivity and adopt a gender-neutral approach, as also empathy for the less advantaged and the differently-abled including those with learning disabilities; demonstrate proficiency in arts/ sports/ games, physical, mental and emotional fitness, entrepreneurial /organizational /pubic

speaking/environmental/ community-oriented areas by actively participating

in the wide range of co-curricular activities that are available to the students of Mar Ivanios College.

Programme Specific Outcomes (PSOs)

In conformity with the POs, the Programme Specific Outcomes (PSOs) of the Major in Mathematics are drafted as given below:

On successful completion of the Four-Year Under-Graduate Programme with Mathematics major, students will be able to:

PSO 1	Understand the foundational principles of mathematics in order to analyse, interpret and draw inferences from mathematical statements and data using the principles of mathematical logic and effectively communicate mathematical ideas through various means.
PSO 2	Discuss and illustrate the core mathematical concepts contained in various branches of mathematics like analysis, algebra, discrete mathematics, probability theory and earn proficiency in advanced mathematical applications through differential equations, linear algebra, operations research, graph theory, number theory, etc.
PSO 3	Apply various mathematical principles and methods to develop proficiency in problem-solving skills with regard to real-world situations in diverse fields and build critical and analytical thinking capacity and skills through mathematical inquiry and exploration.
PSO 4	Engage with current trends and developments in diverse research and applications in mathematics in order to acquire the capacity for independent learning and research and acquire skills for ongoing self-directed study and professional development in mathematics, and embrace opportunities for intellectual growth and exploration beyond the classroom.
PSO5	Identify the diverse cultural perspectives and experiences within the mathematical community and society and improve collaboration and teamwork skills through group exercises, discussions, problem-solving activities, lab works, projects, mathematical outreach activities, etc.
PSO6	Develop expertise and skills in the use of various mathematical software and computational tools and applying them in different fields and disciplines of knowledge.
PSO7	Practise self-discipline and persistence in life through focused mathematical pursuits, overcoming challenges and setbacks through perseverance, resilience, and mastery.
PSO8	Formulate ethical awareness and responsibility in the use and application of mathematical knowledge for sustainable development and proficiency in analysing environmental data using mathematical modelling and statistical techniques.

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

Course and Credit Structure of FYUGP

The pathway preferably followed by the department will be Major with Minor or Major with multiple disciplines of study.

Sem	DSC (4 Cr)	DSE (4 Cr)	AEC (3 Cr)	SEC (3Cr)	MDC (3Cr)	VAC (3 Cr)	Internship (credit-2)/ Project/ Additional Courses (credit-12)	Total courses	Total credits
I	A-1 B-1 C-1		AEC (Eng)-1 AEC(OL)-2		MDC-1			6	21
II	A-2 B-2 C-2		AEC (Eng)-3 AEC(OL)-4		MDC-2			6	21
III	A-2 B-2 C-2	DSE A - 1			MDC (Kerala Studies)-3	VAC-1		6	22
IV	A-4 A-5	DSE A-2		SEC-1		VAC-2 VAC-3	Internship	6	21
V	A-6 A-7 A-8	DSE -3 DSE -4		SEC-2				6	23
VI	A-9 A-10 A-11	DSE -5 DSE -6		SEC-3				6	23
Total	A (11) B (3) C (3)	6	4	3	3	3	1*	36	133

The Course and Credit Structure of FYUGP is given below:

ABLE AND STUDENTS WILL BE AWARDED UG DEGREE WITH MAJOR IN A EXIT OP

VII	A-12 A-13 B/C-4 B/C-5 B/C-6	DSE -7						6	24
VIII	MOOC courses A -14, A -15						Research Project/ Internship /Project or 03 courses - 12Cr	2+1**/3***	20
Total	A (15) B(3) C (3) B/C(3)	7	4	3	3	3	1*+1**/ 3***	44+1* + 1**/3***	177

A – Major Discipline B/C-Minor/Multiple discipline

* - Mandatory Internship at the end of Semester 4

** - Research Project/ Internship /Project as part of Honours with Research

*** - Additional courses of 4 credits each.

Cr - Credits

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

- **Research group project for students exiting after UG 3 years:** Students who propose to exit after 3 Year UG programme can do a group project with an extra two credits to obtain research experience in discipline-specific areas of the program. The BoS can decide the number of students for the group and the evaluation criteria.
- Students will be able to take other pathways permissible under University of Kerala Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024, subject to the availability of courses/ faculty/infrastructure of the college.
- The Board of Studies shall prepare and publish a list of online courses at different levels before the commencement of classes in the respective semester offered in various online educational platforms recognised by the academic council of the college, which can be opted by the students for acquiring additional credits.
- Field trip/study tour: A study tour to places of interest in India focusing on secularism and oneness promotes intercultural understanding, tolerance, and the appreciation of diversity, fostering the values of secularism and unity in a multicultural society. Field visits provide students with practical, hands-on experiences that enhance their understanding of theoretical concepts taught in the classroom. By seeing and experiencing real-world applications of what they learn, students are better equipped to grasp and retain knowledge. This engagement can lead to improved academic performance and a deeper comprehension of the subject matter. Hence, field trip/study tour will be part of the 3 Year/4 Year UG Programme majoring in Mathematics offered by the Department of Mathematics and Statistics, Mar Ivanios College (Autonomous). The number of days for the field trip/study tour will be decided by the Principal in consultation with the BoS and the College Council.

Course Participation/Attendance-

- 1. A student shall be permitted to register for the end-semester evaluation of a specific course to acquire the credits only if the student has completed 75% of the prescribed classroom activities in physical, online, or blended modes, as stipulated by the BoS, including any makeup activities as specified by the faculty of that particular course.
- 2. The reasons/cases of permissible authorised leave shall be specified by the college, with the approval of the Academic Council, ratified by the Governing Body.
- 3. The condonation facility shall be availed as per the existing University/college norms.

Assessment and Evaluation

1. The assessment of a course shall combine a Continuous Comprehensive Assessment (CCA) and an End Semester Evaluation (ESE).

- **2.** For courses without practical/lab modules, 30% weightage shall be given for CCA and the remaining 70% of the weight shall be for the ESE.
- **3.** CCA will have two sub-components: Formative Assessment (FA) and Summative Assessment (SA).
- 4. The CCA subcomponents will be given marks as per the following proportions:
 - Discipline specific summative assessment 15% of the total
 - Course attendance (Formative) -
 - Discipline specific formative assessment 10% of the total.
- 5. The details of summative and formative assessment criteria, including that of attendance, will be specified by each course coordinator at the beginning of the semester, with the approval of the respective Head of the Department/BoS Chairperson and the Principal, and will be published on the college website.
- **6.** For courses with practical/lab modules, 40% weightage shall be given for CCA and the remaining 60% of the weight shall be for the ESE.
- **7.** In such cases specified in the item above, the CCA subcomponents will be given marks as per the following proportions:
 - Discipline specific summative assessment 10% of the total
 - Course attendance (Formative)

•

Discipline specific formative assessment - 15% of the total.

_

5 % of the total.

5 % of the total.

• Summative Assessment (Practical Record, Practical test, skill, etc). - 10% of the total.

The above is given in detailed tabular form as follows:

Sl. No.	Activity	Percentage(%) of the total
110.		Theory Courses	Courses with practical
1.	Summative Assessment (written Test or any other discipline specific assessment tools like Open book test, Lab reports, problem-based assignments, individual or team project report, case study report, literature survey, book reviews, video/film/documentary productions, etc)	15	10
2.	Summative Assessment (Practical Record, Practical test, skill, etc)		10
3.	Formative Assessment (Attendance)	5	5
4.	Formative Assessment (Class room activities, observation of skills, viva voce, quiz, interview, oral presentations, in class discussions, computerized	10	15

adaptive testing, group tutorial work, reflection writing assignments, field study reports, self and peer assessments, service-learning activities, etc.)		
Total	30	40

- 8. The Course Coordinator shall be responsible for evaluating all the components of CCA for the course in question. Any grievances regarding the same shall be submitted to the Course Coordinator within 5 days of the publication of the same on the department notice board or official class group. If the grievance is not settled at the Course Coordinator level, the student is free to appeal to the Head of the Department, within the next 3 days, who will discuss the same in the Department Level Monitoring Committee (DLMC). If still needed, students can further appeal to the College Level Monitoring Committee (CLMC) or in essential situations the University Level Monitoring Committee (ULMC) in a time period as specified by these bodies.
- **9.** Regarding evaluation, one credit will be evaluated for 20 marks in a semester; thus, a 4-credit course will be evaluated for 80 marks, and 3-credit courses for 60 marks. However, any changes to this if brought by the University will be followed.
- **10.** The duration of the end semester examination of a course with 4 credits will be 2 hours and the same for a course with 3 credits may be 1.5 hours/2 hours.

Course	Cr	edit	Ma	arks		Lecture			Practical	
	Lecture	Practical	Lecture	Practical	CCA	(30%)	ESE	CCA	(40%)	ESE
					SA	FA	(70%)	SA	FA	(60%)
					(50%)	(50%)		(50%)	(50%)	
	4	0	80	0	12	12	56	0	0	0
	3	1	60	20	9	9	42	4	4	12
4 credit	2	2	40	40	6	6	28	8	8	24
courses	1	3	20	60	3	3	14	12	12	36
	0	4	0	80	0	0	0	16	16	48
3 credit	Cre	edits	Ma	Marks Lecture Practical		Practical	cal			
courses	Lecture	Practical	Lecture	Practical	CCA	(30%)	ESE	CCA	(40%)	ESE
				SA FA (70%	(70%)	SA	FA	(60%)		
					(50%)	(50%)		(50%)	(50%)	
	3	0	60	0	9	9	42	0	0	0
	2	1	40	20	6	6	28	4	4	12
	1	2	20	40	3	3	14	8	8	24
	0	3	0	60	0	0	0	12	12	36

Mark Distribution Table

Letter Grades and Grade Point

- 1. A mark system is followed to evaluate each question. For each course in the semester, letter grades and grade points are introduced in a 10-point indirect grading system as per the guidelines given below.
- 2. The Semester Grade Point Average (SGPA) is computed from the grades to measure the student's performance in a given semester. The SGPA is based on the current term's grades, while the Cumulative Grade Point Average (CGPA) is based on the grades in all

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

courses taken after joining the programme of study.

3. The weighted grade point will be mentioned in the student's final grade cards, issued by the college, based on the marks obtained.

Letter Grade	Grade Point	Percentage of marks (X) (CCA + ESE together)	Class
O (Outstanding)	10	$X \ge 95\%$	FIRST CLASS
A+ (Excellent)	9	$85\% \le X < 95\%$	WITH
A (Very Good)	8	$75\% \le X < 85\%$	DISTINCTION
B+ (Good)	7	$65\% \le X < 75\%$	FIRST CLASS
B (Above	6	$55\% \le X < 65\%$	
Average)			
C (Average)	5	$45\% \le X < 55\%$	SECOND CLASS
$P(Pass)^*$	4	$35\% \le X < 45\%$	THIRD CLASS
F (Fail)	0	X< 35%	FAIL
Ab (Absent)	0		FAIL

4. The grades and grade points will be given as per the following format:

- For a course PASS, separate minimum of 35% is needed for CCA and ESE.
- Less than 35% in either ESE or CCA is FAIL.

Computation of SGPA and CGPA

SGPA (Semester Grade Point Average) and CGPA (cumulative Grade Point Average) will be computed as follows:

1. The SGPA is the ratio of the sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student in the semester. That is,

$$S_j = \frac{\sum (C_{ij} \times G_{ij})}{\sum C_{ij}}$$

where S_j is the SGPA in the jthsemester,

 C_{ij} is the number of credits for the ith course in the jth semester, and G_{ij} is the the grade point scored by the student in the ith course in the jth semester.

2. The CGPA is also calculated in the same manner considering all the courses undergone by a student over all the semesters of a programme. That is,

$$CGPA = \frac{\sum (C_i \times S_i)}{\sum C_i}$$

where S_i is the SGPA in the ith semester and $\sum C_i$ is the total number of credits in the ith semester.

- 3. The SGPA and CGPA shall be rounded to 2 decimal points and reported in the transcripts.
- 4. **Requirement for the successful completion of a Semester:** SGPA of 4 or above and a PASS in all the courses, that is, minimum total of 35% mark in each course (CCA + ESE), with a separate minimum of 35% mark for both CCA and ESE. Appropriate and permissible rules of rounding off numbers may be adopted as per decisions of the Academic Council.
- 5. Minimum Eligibility Criteria for 4 Year UG (Honours with Research):
 - Students satisfactorily finishing all courses up to the 6th semester in the Department, with a CGPA of 7.5/10 or equivalent to 75% marks and above, will qualify to select the Honours programme with a Research Degree during the upcoming 7th and 8th semesters.
 - A relaxation of 0.5 score, i.e., CGPA of 7/10 or an equivalent relaxation of grade, will be allowed for those who belong to SC/ST/OBC (non-creamy layer)/Differently Abled, Economically Weaker Section (EWS) and other categories as per the UGC norms from time to time

Sumesh S S Chairman BoS Assistant Professor and Head Department of Mathematics and Statistics Mar Ivanios College (Autonomous), Thiruvananthapuram

Thiruvananthapuram

22-10-2024

List of Courses

Course Code	Course Title	Course Categor	Credits	Hour distribution per week			
		00	0	L	Τ	Р	
S	SEMESTER I - Academic Level 100-	199					
MIUK1DSCMAT100.1	Foundations of Mathematics - I	DSC	4	4			
MIUK1DSCMAT101.1	Mathematics for Physical Sciences – I	DSC	4	4			
MIUK1DSCMAT102.1	Mathematics for Life Sciences - I	DSC	4	4			
MIUK1DSCMAT103.1	Mathematics for Social Sciences - I	DSC	4	4			
MIUK1DSCMAT104.1	Mathematical Methods for Finance - I	DSC	4	4			
MIUK1DSCMAT105.1	Calculus of one and more than one variable	DSC	4	4			
MIUK1MDCMAT106.1	Quantitative Techniques and Aptitude (Basic Mathematics for Competitive Examinations)	MDC	3	3			
S	EMESTER II - Academic Level 100	-199					
MIUK2DSCMAT150.1	Foundations of Mathematics - II	DSC	4	4			
MIUK2DSCMAT151.1	Mathematics for Physical Sciences – II	DSC	4	4			
MIUK2DSCMAT152.1	Mathematics for Life Sciences - II	DSC	4	4			
MIUK2DSCMAT153.1	Mathematics for Social Sciences - II	DSC	4	4			
MIUK2DSCMAT154.1	Mathematical Methods for Finance - II	DSC	4	4			
MIUK2DSCMAT155.1	Linear Algebra and Numerical Approximations	DSC	4	4			
MIUK2MDCMAT156.1	Data Interpretation and Logical Reasoning	MDC	3	3			
SI	EMESTER III - Academic Level 200	-299					
MIUK3DSCMAT200.1	Advanced Calculus	DSC	4	4			
MIUK3DSCMAT201.1	Mathematics for Physical Sciences - III	DSC	4	4			
MIUK3DSCMAT202.1	Mathematics for Life Sciences - III	DSC	4	4			
MIUK3DSCMAT203.1	Basic Operations Research	DSC	4	4			
MIUK3DSCMAT204.1	Statistics and Optimization	DSC	4	4			
MIUK3DSEMAT205.1	Elementary Number Theory and Cryptography	DSE	4	4			
SI	EMESTER IV - Academic Level 200	-299					
MIUK4DSCMAT250.1	Linear Algebra	DSC	4	4			
MIUK4DSCMAT251.1	Vector Calculus	DSC	4	4			
MIUK4DSEMAT252.1	Theory of Equations	DSE	4	4			

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

MIUK4SECMAT253.1	Python Programming and LaTeX	SEC	3	3	
MIUK4INTMAT260	Internship		2		
S	EMESTER V - Academic Level 300	-399			
MIUK5DSCMAT300.1	Real Analysis – I	DSC	4	4	
MIUK5DSCMAT301.1	Complex Analysis	DSC	4	4	
MIUK5DSCMAT302.1	Abstract Algebra - Group Theory	DSC	4	4	
MIUK5DSEMAT303.1	Numerical Methods	DSE	4	4	
MIUK5DSEMAT304.1	Graph Theory	DSE	4	4	
MIUK5SECMAT305.1	Data Analysis using Python	SEC	3	3	
SI	EMESTER VI - Academic Level 300	-399			
MIUK6DSCMAT350.1	Real Analysis- II	DSC	4	4	
MIUK6DSCMAT351.1	Operations Research	DSC	4	4	
MIUK6DSCMAT352.1	Abstract Algebra - Ring Theory	DSC	4	4	
MIUK6DSEMAT353.1	Differential Equations	DSE	4	4	
MIUK6DSEMAT354.1	Integral Transforms	DSE	4	4	
MIUK6SECMAT355.1	Introduction to Machine Learning	SEC	3	3	
SF	CMESTER VII - Academic Level 40)-499			
MIUK7DSCMAT400.1	Advanced Linear Algebra	DSC	4	4	
MIUK7DSCMAT401.1	Advanced Real Analysis	DSC	4	4	
MIUK7DSCMAT402.1	Topology	DSC	4	4	
MIUK7DSEMAT403.1	Advanced Topics in Graph Theory	DSE	4	4	
MIUK7DSEMAT404.1	Ordinary Differential Equations	DSE	4	4	
MIUK7DSEMAT405.1	Abstract Algebra – Field Theory	DSE	4	4	
MIUK7DSEMAT406.1	Measure Theory and Integration	DSE	4	4	
MIUK7DSEMAT407.1	Partial Differential Equations	DSE	4	4	
	MESTER VIII - Academic Level 40	0-499			
MIUK8RPHMAT460/	Research Project/		12		
MIUK8CIPMAT461	Internship Project				

SEMESTER - I

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

Mar Ivanios College (Autonomous)

Discipline	MATHEMATI	MATHEMATICS									
Course Code	MIUK1DSCMAT100.1										
Course Title	Foundations of Mathematics - I										
Type of Course	DSC										
Semester	Ι	I									
Academic level	100 - 199	100 – 199									
Course Details	Credit	CreditLectureTutorialPracticalTotalper weekper weekper weekper weekHours/Week									
	4	4 hours	-	-	4						
Pre-requisites	1. Properties of r	eal numbers									
	2. Real valued fu	inctions									
	3. Basics of two-	dimensiona	l geometry								
	4. Ability to anal	yse a Mathe	ematical prob	olem.							
	Texts :										
	Text 1: H Antor Wiley& Sons.	n, I Bivens,	S Davis. C	alculus, 10th	Edition, John						
	Text 2 : S R I Edition, Pearson		is with an	Introduction	to Proof, 5th						
	References :										
	 G B Thoma Addison-Wes J Stewart. C 	sley Publish	ing Compan	У	Edition, Functions, 7th						

	Edition, Cengage India Private Limited									
	3. Tom M. Apostol. Calculus, Volume 1, 2 nd Edition, John Wiley									
	& Sons									
	4. Tom M. Apostol. Calculus, Volume 2, John Wiley & Sons									
	5. Irving M Copi, Cark Cohen, Kenneth McMohan, Introduction to									
	Logic (14th ed), Pearson, 2011									
	5. Krishna Jain, A Textbook of Logic, (5th ed), DK Print World,									
	New Delhi, 2012.									
Course	The course begins by delving into fundamental concepts of									
Summary	functions, progressing to explore advanced properties like									
	operations on functions, graphical representations, and the impact									
	of transformations on graph of functions. A comprehensive									
	examination of limits, various limit evaluation techniques, and									
	continuity follows. Additionally, the curriculum covers an in-									
	•									
	depth analysis of Polar coordinate systems, families of lines, rays,									
	circles, diverse curves, and spirals. The course extends to introduce									
	cylindrical and spherical coordinate systems. Finally, it culminates									
	with the "Logic" module, focusing on logical connectives and the									
	methodologies employed in mathematical proofs.									

Detailed Syllabus:

Module	Unit	Content	Hrs							
Ι		More on Functions of One Variable	15							
	1	Arithmetic operations on functions, composition of functions	1							
	2									
	3									
	4	Families of functions	2							
	5	Inverse functions	2							
	6	Exponential functions	1							
	7	logarithmic functions	2							
	8	Inverse trigonometric functions	1							
	9	Hyperbolic functions	2							

	ІСТ	tools can be used to enhance effective learning.							
		topics in this module can be found in chapters 0 and 6 sec).3, 0.4, 6.1, 6.7, 6.8 of text [1]	ctions						
II		Limits and continuity	15						
	10	Limits, one sided limits, two sided limits and infinite limits, vertical asymptotes	3						
	11	Techniques for computing limits	3						
	12	Limits at infinity for polynomials	2						
	13 Rational functions and functions involving radicals								
	14	Continuity	2						
	15	Continuity of trigonometric functions	1						
	16	Obtaining limits by squeezing	1						
	17	Introduction to differentiation	2						
	ICT	tools can be used to enhance effective learning.							
		topics in this module can be found in chapters 1 and 2 sec 1.2, 1.3, 1.5, 1.6, 2.1 and 2.2 of text [1]	ctions						
III		Coordinate geometry	15						
	18	parametric equations of a curve, orientation of a curve	1						
	19	expressing ordinary functions parametrically	1						
	20	Polar co-ordinate systems, relationship between polar and	2						
		rectangular co-ordinate systems							
	21	rectangular co-ordinate systems graphs in the polar co-ordinate system	4						
	21 22		4						
		graphs in the polar co-ordinate system							
	22	graphs in the polar co-ordinate system families of lines, rays, circles, other curves and spirals	3						
	22 23 24	graphs in the polar co-ordinate system families of lines, rays, circles, other curves and spirals coordinate system in three-dimensional space cylindrical and spherical coordinate system	3						
	22 23 24	graphs in the polar co-ordinate systemfamilies of lines, rays, circles, other curves and spiralscoordinate system in three-dimensional space	3						

	section	ons 10.1, 10.2, 11.1, 11.8 of text [1]						
IV		Mathematical Logic	15					
	25	Statements, Logical connectives, Truth values and truth tables, Equivalent statements	5					
	26	Negation						
	27							
	28							
	ICT 1	tools can be used to enhance effective learning.						
		topics in this module can be found in chapter 1 section 1 to ext [2]	4					

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define and develop the concept of functions their operations and families of functions.	U	PSO-1,3, 4, 7, 8
CO-2	Describe geometric effect of different operations on functions and draw the appropriate graph neatly and correctly.	С	PSO-1,3, 4, 5, 6, 7, 8
CO-3	Define limit and calculate limits using different computational methods.	Ар	PSO- 1,2,3, 4, 7, 8
CO-4	Translate unbroken curve into a precise mathematical formulation called continuity.	U	PSO-1,2, 3, 4, 7, 8
CO-5	Sketch curves using ICT tools.	Ар	PSO-1,5, 6, 7, 8
CO-6	Understand logical concepts, truth values of statements, and apply various techniques of proof	An	PSO-1,3, 4, 5, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO No.	СО	PO/PS O	Cogn itive Level	Knowl edge Categ ory	Lectur e (L)/Tu torial (T)	Pra ctic al (P)
CO 1	Define and develop the concept of functions their operations and families of functions	PO-1,2, 4,5, 6, 7	U	F, C	L	
CO 2	Describe geometric effect of different operations on functions and draw the appropriate graph neatly and correctly	PO-1,2, 4,5, 6, 7	С	F, C, M	L	
CO 3	Define limit and calculate limits using different computational methods	PO-1,2, 4,5, 6, 7	Ар	F, C, P	L	
CO 4	Translate unbroken curve into a precise mathematical formulation called continuity.	PO-1,2, 4,5, 6, 7	U	F,C, M	L	
CO 5	Sketch curves using ICT tools.	PO-1,2, 4,5, 6, 7	Ap	Р, М	L	
CO 6	Understand logical concepts, truth values of statements, and apply various techniques of proof	PO-1,2, 4,5, 6, 7	An	F, C, P, M	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS 0 1	PS O 2	PS 0 3	PS 0 4	PS 0 5	PS 0 6	PS O 7	PS 0 8	P 0 1	P 0 2	P O 3	P O 4	P O 5	P O 6	P O 7
CO 1	3	-	3	2	•	-	1	1	3	3	-	1	3	1	1
CO 2	3	-	3	-	2	3	1	1	3	3	-	1	3	1	1
CO 3	3	2	3	2	-	-	1	1	3	3	-	1	3	1	1

CO 4	3	2	3	2	-	-	1	1	3	3	-	1	3	1	1
CO 5	3	-	-	-	2	3	1	1	3	3	-	1	3	1	1
CO 6	3	-	3	2	2	-	1	1	3	3	-	1	3	1	1

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
 - Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓	1		✓
CO 2	1	1		✓
CO 3	1	1		✓
CO 4	1	1		✓
CO 5		1		
CO 6	1	1		1

Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	ĊS										
Course Code	MIUK1DSCMAT101.1											
Course Title	Mathematics for Physical Sciences – I											
Type of Course	DSC											
Semester	I											
Academic Level	100 – 199	100 – 199										
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week							
Details		per week per week Per week Hours/Week										
	4	4 4 hours 4										
Pre-requisites	Concept of function	Concept of functions, Elementary matrix theory										
Text Book	Text: 1. Anton, I Bivens Sons. 2. Erwin Kreyszig Edition, Wiley-In References: 1. George B. Thor geometry, 9th Edi 2. K. F. Riley, M. Physics and Engin 3. Mary L. Boas, Edition, Wiley.	g, <i>Advanced</i> dia mas, Ross L ition, Addiso P. Hobson, neering, 3rd Mathematic	<i>Engineering</i> . Finney, Ca on-wesley pu S. J. Bence, Edition, Car s Methods ir	<i>Mathematic</i> lculus and an iblishingCom Mathematica nbridge Univ i the Physical	es, 10 th nalytic npany. al Methods for versityPress. I Sciences, 3rd							
Course Summary	The course covers and its application continuity. Studen differentiate vario functions. Applica matrices are to be explained. Studen	ns. It begins nts learn diff ous functions ation of diffe covered. Di	with the stud ferentiation a s. Students le erentiation is ifferent types	dy of function and how they earn different s explained. F s of Matrices	ns, limits and are used to properties of Review of are							

are used to manipulate matrices, leading to the understanding of
echelon forms. Finally system of linear equations are introduced.
Students should be able to solve system of liner equations.
completing the course's coverage of Differentiation and its diverse
applications.

Detailed Syllabus:

Module	Unit	Content	Hrs							
Ι		Functions and Derivatives	15							
	1	The module should begin with revising Functions, Limits and continuity are to be covered using Sections 1.1, 1.2 and 1.5.ICT tools can be used to enhance effective learning.	5							
		 Various techniques for differentiation discussion are to be covered using Sections 2.2 to 2.7. This portion will cover the product and quotient rules, derivatives of trigonometric functions, chain rule and implicit differentiation. ICT tools can be used to enhance effective learning. 								
		ICT tools can be used to enhance effective learning.								
	-	opics in this module can be found in Chapter 1; Sections 1.1, 1. 5 Chapter 2; Sections 2.2 to 2.7 of Text.1]	.2							
II		Derivatives of More Functions	15							
	2	Basic properties of exponential and logarithmic functions and techniques of differentiation involving these functions may be explored as in Sections 6.1 and 6.2 (avoid results on integration).	5							
		ICT tools can be used to enhance effective learning.								
		Derivatives of Inverse trigonometric functions are to be covered in Sections 6.5 and 6.7. Introduction and derivatives of Hyperbolic functions are to be covered in Section 6.8.	10							
		ICT tools can be used to enhance effective learning.								
		opics in this module can be found in Chapter 6; Sections 6.1, 6.7 7 and 6.8 of Text.1]	2,							
III	1	Applications of Derivatives and Partial Differentiation	15							

	3 Properties of functions like increase, decrease, concavity, 8	8						
	maxima and minima has to be analyzed as in Sections 3.1							
	and 3.2. Absolute extrema of finite intervals are to be covered in Section 3.4. Rolle's Theorem and mean value							
	theorem has to be discussed as in Section 3.8.							
	ICT tools can be used to enhance effective learning.							
	This module begins with a study of functions of two or more 7	7						
	independent variables. We describe the domains, graphs and							
	level curves of such functions as in section 13.1. A							
	discussion about partial differentiation, without going into							
	analytic details of continuity of partial derivatives can be							
	conducted as in section 13.3. Discuss problem 94 of exercise set 13.3.							
	Set 15.5.							
	ICT tools can be used to enhance effective learning.							
	[The topics in this module can be found in Chapter 3 within Sections 3.1 3.2, 3.4 and 3.8 and Chapter 13; Sections 13.1, 13.3 of Text]	1,						
IV	Matrices and Determinants 1	15						
	4Review of Matrices are to be covered in Section 7.1. Types of Matrices like upper and lower triangular matrices, Diagonal matrix, Scalar matrix, Unit matrix, Nilpotent matrix and Idempotent matrix are to be covered in Section 7.2.5							
	Linear system, Augmented matrix, Elementary row operations, Row echelon form, Row equivalent systems and Rank are to be covered in Section 7.3. Solution of linear systems are to be covered in Section 7.5	10						
	[The topics in this module can be found in Chapter 7, Sections 7.1, 7 and 7.5 of Text2]							

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Gain an idea of functions, including limits and continuity, master the concept of Differentiation, understanding various techniques of differentiation like product rule and quotient rule.	U	PSO-1,2
CO-2	Gain an understanding of derivatives of trigonometric functions, gain proficiency in finding derivatives of	R	PSO-1,3

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	different trigonometric functions, master the concept of chain rule and implicit differentiation including their calculation.		
CO-3	Understanding various functions and learning techniques of differentiation involving these functions, review inverse trigonometric functions including their derivatives, learn about hyperbolic functions, understanding derivatives of hyperbolic functions.	Ар	PSO-3,8
CO-4	Master the properties of functions, understanding important theorems in differentiation, gain the idea of partial differentiation, understanding various techniques of partial differentiation, master the concept of partial differentiation.	An	PSO-1,8
CO-5	Understanding different types of matrices, gain the concept of linear system of equations, row operations, row echelon form, computing solutions of linear system of equations.	E	PSO-1,7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO /PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Gain an idea of functions, including limits and continuity, master the concept of Differentiation, understanding various techniques of differentiation like product rule and quotient rule.	PSO- 1,2	F,C	U	F, C	L
CO-2	Gain an understanding of derivatives of trigonometric functions, gain proficiency in finding derivatives of different trigonometric functions, master the concept of chain rule and implicit differentiation including their calculation.	PSO- 1,3	F,C	R	Р	L
CO-3	Understanding various functions and learning techniques of differentiation involving these functions, review inverse trigonometric functions	PSO- 3,8	F,C	Ар	E	L

	including their derivatives, learn about hyperbolic functions, understanding derivatives of hyperbolic functions.					
CO-4	Master the properties of functions, understanding important theorems in differentiation, gain the idea of partial differentiation, understanding various techniques of partial differentiation, master the concept of partial differentiation.	PSO- 1,8	F,C	An	U	L
CO-5	Understanding different types of matrices, gain the concept of linear system of equations, row operations, row echelon form, computing solutions of linear system of equations.	PSO- 1,7	F,C,P	Е	R	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O2	PS O4	PS O5	PS 06	PS O7	PS O8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	2	1	3	3	3	3	2	1	2	2	3	3	3	2	3
CO 2	3	2	2	3	3	2	3	3	1	2	2	2	3	3	2
CO 3	3	3	1	3	1	2	3	2	2	3	1	2	3	2	1
CO 4	1	3	3	3	2	3	1	3	2	1	2	3	2	1	3
CO 5	2	3	2	1	3	2	3	2	2	3	2	2	2	3	2

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	
2	Moderate / Medium	
3	Substantial / High	

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		\checkmark
CO 6			\checkmark	

Mar Ivanios College (Autonomous)

Discipline	MATHEMATICS				
Course Code	MIUK1DSCMAT102.1				
Course Title	Mathematics for	· Life Scien	ces - I		
Type of	DSC				
Course					
Semester	Ι				
Academic Level	100 - 199				
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	4 hours	-	-	4
Pre-requisites	1. High School L	evel Basic N	Aathematics		
Course Summary	1. High School Level Basic Mathematics This course provides a comprehensive overview of fundamental mathematical concepts and their applications. Beginning with integers, rational, and real numbers, students delve into the intricacies of percentages, algebraic laws, and inequalities. Powers and fractional powers lead into quadratic equations, logarithms, and the relationship between natural and common logarithms. Introduction to sets, subsets, and set operations like union and intersection, including De Morgan's laws and Venn diagrams, lays the foundation for understanding relationships within data sets. The course progresses to cover product of sets, relations, and functions, including one-to-one and onto functions, along with polynomials and various types of functions such as periodic, exponential, logarithmic, and trigonometric functions. Sketching of elementary functions using software enhances visualization skills. Examples and discussions on convergence and divergence, infinite series, and				

	sequences and series. The course concludes with an introduction to standard matrices, matrix algebra, determinants, vectors in space, and their real-world applications.				
Text	Edward Batschelet, Introduction to Mathematics for Life Scientists, Springer, 1973.				
	Chapter 1: Sections: 1.1 – 1.11				
	Chapter 2: Sections: $2.1 - 2.7$				
	Chapter 3: Sections: 3.1 – 3.6				
	Chapter 4: Sections: 4.1 – 4.3, 4.6				
	Chapter 6: Sections: 6.1 – 6.4				
	Chapter 14: Sections: 14.1 – 14.5				
References	 S. T. Tan, Finite Mathematics for the Managerial, Life and Social Sciences, 9th Edition, Cengage Learning. Glenn Ledder, Mathematics for the Life Sciences, Springer. Raina S. Robeva, James R. Kirkwood, Robin L. Davies, Leon S. Farhy, Michael L. Johnson, Boris P. Kovatchev, and Marty Straume, An Invitation to Bio mathematics, ELSEVIER. 				

Detailed Syllabus:

Module	Unit	Content	Hrs	
Ι		Mathematical Preliminaries		
	1	Integers, Rational numbers, Real numbers	1	
2		Percentages.	1	
	3	Algebraic laws	1	
	4	Inequalities	2	
	5	Powers and fractional powers	1	
	6	quadratic equations	1	
	7 logarithm, relation between natural and common logarithm			
	8	Introduction to sets, subsets, proper subsets	1	

		power set, union, intersection, complements	1	
		d'Morgn's laws	2	
		Ven Diagram	1	
II	Relations and Functions			
	1	Product of sets, relations,	3	
	2	functions, one to one and onto functions,	3	
	3	Polynomials, Periodic functions, exponential functions, logarithmic functions, trigonometric functions, Inverse of a function, applications	5	
	4	Sketching of elementary functions like polynomial functions, exponential functions, trigonometric functions, logarithmic functions using GeoGebra or any software (Sketching of function using software is not meant for ESE)	4	
III	Sequences and Series			
	1	Examples	1	
		general term	2	
		convergence and divergence	1	
	2	Infinite series	2	
		sum to first <i>n</i> terms	3	
	3	geometric series	2	
		harmonic series	2	
		convergence	2	
IV		Matrix Algebra	15	
	1	Introduction	2	
		Standard matrices	3	
	2	Matrix Algebra	2	

		Determinant	3
	3	Vectors in Space	3
	4	Applications	2

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	demonstrate a strong understanding of fundamental mathematical concepts including integers, rational numbers, real numbers, percentages, algebraic laws, and inequalities.	R	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	develop problem-solving skills through solving quadratic equations, utilizing powers and fractional powers, and applying logarithms to various scenarios.	U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-3	apply set theory principles, including understanding sets, subsets, and set operations such as union, intersection, and complements, along with De Morgan's laws and Venn diagrams.	Ар	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	analyse and understand various types of functions including polynomials, periodic functions, exponential functions, logarithmic functions, and trigonometric functions. They will also grasp the concept of inverse functions and their applications.	R	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	Sketch elementary functions using software like GeoGebra, enhancing their visualization skills and understanding of function behaviour.	С	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	apply mathematical concepts learned in the course to solve real-world problems, including applications in matrix algebra, determinants, vectors in space, and various other practical	С	PSO: 1, 2, 3, 4, 5, 6, 7

scenarios.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitiv e Level	Knowle dge Categor	Lecture (L)/Tuto rial (T)
1	demonstrate a strong understanding of fundamental mathematical concepts including integers, rational numbers, real numbers, percentages, algebraic laws, and inequalities.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	R	F, A, P	L
2	develop problem-solving skills through solving quadratic equations, utilizing powers and fractional powers, and applying logarithms to various scenarios.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C, P	L
3	apply set theory principles, including understanding sets, subsets, and set operations such as union, intersection, and complements, along with De Morgan's laws and Venn diagrams.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	Ap	С, Р	L
4	analyse and understand various types of functions including polynomials, periodic functions, exponential functions, logarithmic functions, and trigonometric functions. They will also grasp the concept of inverse functions and their applications.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	R	С, Р	L
5	Sketch elementary functions using software like GeoGebra, enhancing their visualization skills and understanding of function behaviour.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	С	F, C, P	L
6	apply mathematical concepts learned in the course to solve real-world problems, including	PO: 1, 2, 3, 4, 5, 6, 7	С	С, Р, М	L

applications in matrix algebra, determinants, vectors in space, and various other practical scenarios.	2, 3, 4, 5,			
---	-------------	--	--	--

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	3	2	1	1	1	2	1	1	3	1	1	1	1	1
CO 2	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 3	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 4	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 5	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 6	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

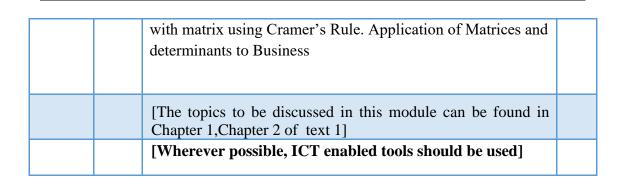
Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	~			\checkmark
CO 3	✓			\checkmark
CO 4		1		\checkmark
CO 5		1		\checkmark
CO 6			1	



Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	S									
Course Code	MIUK1DSCMAT	103.1									
Course Title	Mathematics for	Mathematics for Social Sciences - I									
Type of Course	DSC	DSC									
Semester	Ι										
Academic Level	100 - 199	100 - 199									
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week						
	4 3 1 - 4										
Pre-requisites	 Equations Basic arithmedia 	metical opera	tions								
Course Summary		ifferent fund essential for ipulation of nequalities, covers the course is r dents with C	ctions, perm or various algebraic e and under matrix algebrain nainly inter Commerce as	utations and business ap expressions, s rstanding ba ora and its a nded for f s their major	combinations plications. It solving linear sic algebraic pplications in irst semester discipline.						
Prescribed Texts	Pvt Ltd, 2023.2. D.C. Sancheti,	 undergraduate students with Commerce as their major discipline. 1.B M Aggarwal – Business Mathematics and Statistics, Ane Books Pvt Ltd, 2023. 2. D.C. Sancheti, V.K. Kapoor Business Mathematics, Sultan Chand & SonsPublications, 2006. 									
Reference Books	Salzman, 1 2. ''Business	13 th Edition, Mathematic	Pearson Pub s" by Cher	lishers	nd Stanley A. Iargie Hobbs, rs						

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Set Theory, Fractions, Permutations and Combinations	15
	1	Set theory: definition-Null set- Subset-Power set- Equal set-Union, Intersection [The topics to be discussed in this module can be found in Chapter 2 of Text 2]	4
	2	Fractions, adding and Subtracting fractions adding and multiplying fractions decimal and fraction conversions	5
		[The topics to be discussed in this module can be found in Chapter 2,3 of the Reference text 2]	
	3	Basic concepts of permutations and combinations- Introduction-Factorial-permutation results- Circular permutations with restrictions-Combinations with standard results	6
		[The topics to be discussed in this module can be found in Chapter 9 of the text 2]	
II		Equations	15
	4	Linear equation- simultaneous linear equations Quadratic equations, quadratic equation by factoring,	15
		[The topics to be discussed in this module can be found in Chapter 8 of text 2]	
III		Differentiation	15
	5	Functions, Limits, Continuity, derivatives, rules of differentiation, differentiation of implicit functions.	15
		[The topics to be discussed in this module can be found in Chapter 3 and Chapter 4 of text 1]	
IV		Matrix Algebra	15
	6	Matrices– Matrix operations (addition, subtraction, constant multiplication and multiplication)- Determinants-Minors and cofactors-ad joint -Inverse of a Matrix, solving linear equation	15

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse d
CO-1	Understand the concepts of set theory, permutations and combinations, analyse and solve mathematical problems related to these concepts	U	PSO-1,2,3
CO-2	Identify and practice problems related to linear equations and quadratic equations	Ар	PSO- 1,2,3,6
CO-3	Determine the concept of functions, derivatives, and evaluate the problems using the rules of differentiation	Ар	PSO- 1,2,3,4
CO-4	Perform different matrix operations and solve problems using different techniques of matrices	Ар	PSO-1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Mathematics for Commerce Credits: 4:0:0 (Lecture:Tutorial:)

CO No.	СО	PO/PSO	Cogn itive Level	Knowled ge Category	Lecture (L)/Tutori al (T)	Practica l (P)
1	Understand the concepts of set theory, permutations and combinations, analyse and solve	PO 1,2/PSO- 1,2,3	U	F, C	L	

	mathematical problems related to these concepts					
2	Identify and practice problems related to linear equations and quadratic equations	PO 1,2/ PSO- 1,2,3,6	Ap	С	L	
3	Determine the concept of functions, derivatives, and evaluate the problems using the rules of differentiation	PO 1,2/PSO- 1,2,3,4	Ap	С	L	
4	Perform different matrix operations and solve problems using different techniques of matrices	PO 1,2/PSO- 1,2,3	Ap	C, P	L	

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS O8	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	3	3	3	2	-	-	1	2	3	3	-	-	-	2	1
CO 2	3	3	3	2	1	2	-	1	3	3	-	2	-	1	-

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

42

CO 3	3	3	3	2	1	-	-	1	3	3	-	-	-	-	1
CO 4	3	3	3	-	-	-	2	2	3	3	-	2	1	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			✓
CO 2	✓	1		✓
CO 3	1	✓		 ✓
CO 4		✓		✓

Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	S									
Course Code	MIUK1DSCMAT104.1										
Course Title	Mathematical M	Mathematical Methods for Finance - I									
Type of Course	DSC										
Semester	Ι	Ι									
Academic Level	100 - 199	100 - 199									
Course	Credit	Lecture	Tutorial	Practical	Total						
Details	per week per week Per week Hours/Wee										
	4	4	-	-	4						
Pre-requisites	1. Set Theory										
Course Summary	This course at th with the mathe	e undergrad ematical to			vides students ecessary for						
Summary	understanding an			-	2						
	explains the diff			-							
	focusing on singl	e variable c	ptimization	and Matrix	Algebra. This						
	course is designed	d for first se	mester unde	ergraduate lev	vel economics						
	students.										
Prescribed	Knut Sydsaeter, P		nond: Mathe	ematics for E	conomic						
Text	Analysis, Pearson,	, 1995.									
Reference Textbooks	 G D Allen, Mathematical Analysis for Economics, AITBS Publishers, D-2/15. Krishnan Nagar, New Delhi Taro Yamane, Mathematics for Economists, An Elementary Survey, PHI, New Delhi. 										

 Chiang A.C. and K. Wainwright, Fundamental Methods of Mathematical Economics, 4th Edition, McGraw-Hill, New York, 2005.(cw) Dowling E.T, Introduction to Mathematical Economics, 2nd
Edition, Schaum's Series, McGraw- Hill, New York, 2003(ETD)

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Functions Limits Continuity	15
	1	Functions of one variable : Introduction, Functions of one real variable, graphs, graphs of functions, linear functions.	8
	2	Limits, dash of limits, continuity	7
		Chapter 2, Section 6.1, 4.4, 6.2, 6.3	
II		Differentiation	15
	3	Slopes of curves, the slope of the tangent and the derivative, rates of change and their economic significance, simple rules for differentiation, differentiation of sums, products and quotients, second and higher order derivatives.The generalized power rule, composite functions and the chain rule, implicit differentiation, linear approximations and differentials, polynomial approximation, elasticities.	15
		Chapter 4 and 5	
III		Application of Differentiation to Economics	15
	4	The intermediate-value theorem, the extreme value theorem, the mean value theorem, Taylor's formula, intermediate forms and L' Hopital's rule, inverse functions. Single-Variable Optimization : Some basic definitions, a first-derivative test for extreme points, alternative ways of finding maxima and minima, local maxima and minima, convex and concave functions and inflection points.	15
		Chapter 7, Chapter 9 Sections 1-5	
IV		Linear Algebra and Its applications	15
	5	Linear Algebra - Vectors and Matrices: Systems of linear equations, vectors, matrices and matrix operations, matrix	15

multiplication, rules for matrix multiplication, the transpose.	
Determinants and Matrix Inversion: Determinants of order	
2, determinants of order 3, expansion by cofactors, inverse of	
a matrix, Cramer's rule.	
Linear independence, The rank of a matrix, Eigen values.	
Cayley Hamilton theorem and its applications.	
Chapter 12,13,14	
[Wherever possible, ICT enabled tools should be used]	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Sketch the graph of different functions and analyse the continuity of functions	Ар	PSO-1,2,3
CO-2	Apply the simple rules of differentiation to solve problems like linear approximation, polynomial approximation and elasticities	Ар	PSO- 1,2,3,6
CO-3	Explore, identify and determine the application of differentiation in various topics like Intermediate value theorem, the extremities of a function etc	Ар	PSO- 1,2,3,4
CO-4	Construct matrices and solve various problems related to matrices like finding out inverse of a matrix, eigen values of a matrix etc	С	PSO-1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO	СО		el			
No.			,eve		≥ 0	6
			e L	lige y	(L)/	\odot
		S S O	itiv	yled gor	ıre rial	ical
		q/C	Cognitive	Knowledge Category	ecture utorial	act
		PC	Ŭ	ΰR	Ţ, Ľ	Pr

1	Sketch the graph of different functions and analyse the continuity of functions	PO 1,2/PSO- 1,2,3	Ар	F, C, P, M	L	
2	Apply the simple rules of differentiation to solve problems like linear approximation, polynomial approximation and elasticities	PO 1,2/ PSO- 1,2,3,6	Ар	F, C	L	
3	Explore, identify and determine the application of differentiation in various topics like Intermediate value theorem, the extremities of a function etc	PO 1,2 5/PSO- 1,2,3,4	Ap	С	L	
4	Construct matrices and solve various problems related to matrices like finding out inverse of a matrix, eigen values of a matrix etc	PO 1,2,6/ PSO- 1,2,3	С	С, М	L	

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS O8	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7
CO 1	3	3	3	-	-	-	-	-	3	3	-	2	-	-	1
CO 2	3	3	3	-	-	3	-	-	3	3	-	-	-	1	2
CO 3	3	3	3	3	-	-	-	-	3	3	2	1	3	-	-
CO 4	3	3	3	-	-	-	1	2	3	3	2	-	-	3	1

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓	1		1
CO 2	1	✓		1
CO 3	✓	✓		1
CO 4				1

Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	CS				
Course Code	MIUK1DSCMA	Г105.1				
Course Title	Calculus of one	and more tl	han one var	iable		
Type of Course	DSC					
Semester	Ι					
Academic Level	100 - 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week	
	4	4 hours	-	-	4	
Pre-requisites	 Functions, Lim Differentiation 		tion			
Course Summary	This course covers a wide range of topics in calculus and multivariable calculus. It starts with the study of related rates, local linear approximations, and differentials, providing tools to analyze the behavior of functions. Techniques for analyzing functions such as identifying increasing, decreasing, and concave regions are explored, leading to the study of maxima and minima, including applied maximum and minimum problems. Rolle's and Mean Value Theorems are introduced to understand the behavior of functions over intervals. The course delves into the average value of a function and its applications, along with techniques for evaluating definite integrals by substitution and finding areas between curves. Moving into multivariable calculus, the course examines functions of two or more variables, exploring partial derivatives,					

	differentiability, and local linearity. Chain rules are introduced to study the derivatives of composite functions, leading to discussions on maxima, minima, and Lagrange Multipliers in multivariable contexts. Integration techniques are extended to double and triple integrals, covering areas, volumes, and surface areas of revolution. Techniques for evaluating double integrals over non-rectangular regions, in polar, cylindrical, and spherical coordinates, are discussed, alongside the concept of change of variables using Jacobians. The course culminates in exploring numerical integration methods like Simpson's rule for practical applications.					
Text	 H Anton, I Bivens, S Davis, <i>Calculus</i>, Wiley 10th Edition. Chapter 2: Sections 2.8, 2.9 Chapter 3: Sections 3.1 – 3.5, 3.8 					
	Chapter 4: Section 4.8, 4.9 Chapter 5: Sections 5.1 – 5.8					
	Chapter 7: Sections 7.2, 7.5, 7.7					
	Chapter 13: Sections 13.1 – 13.5, 13.8, 13.9 Chapter 14: Sections 14.1 – 14.3, 14.5, 14.8					
References	 G B Thomas, R L Finney. Calculus, 9th Edition, Addison-Wesley Publishing Company J Stewart. Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited Tom M. Apostol. Calculus, Volume 1, 2nd Edition, John Wiley & Sons 					

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Differential Calculus of one variable and applications	15		
	1	Related rates, local linear approximations, differentials,	5		
	2	Analysis of functions: Increase, decrease, concavity	5		
	3 Maxima and minima, applied maximum and minimum problems				

II		Integral calculus of one variable and applications	15			
	1	Average value of a function and its applications	3			
	2	Evaluations definite integrals by substitution	3			
	4 Integration by parts, Integrating a rational function by partial fractions					
	5 Numerical integration- Simpson's rule					
III		Partial Differentiation and applications	15			
	1	Functions of two or more variables	4			
		partial derivatives, differentiability, differentials and local linearity,	3			
	2	chain rules	4			
	3	maxima and minima,	4			
IV		Multiple Integrals and applications	15			
	1	Double integrals	4			
		Double Integrals over non rectangular regions,	4			
	2	Double integrals in polar coordinates	3			
	3	Triple integrals	4			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Develop a strong understanding and proficiency in various calculus techniques, including related rates, local linear approximations, differentials, and the analysis of functions such as identifying increasing, decreasing, and concave regions.	U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	Equip with problem-solving skills applicable to a	Ар	PSO: 1, 2,

	wide range of mathematical scenarios, including applied maximum and minimum problems, evaluating definite integrals by substitution, finding the area between curves, and determining the length of plane curves and the area of surfaces of revolution.		3, 4, 5, 6, 7
CO-3	Gain a solid understanding of fundamental theoretical concepts in calculus, such as Rolle's and Mean Value Theorems, which are crucial for understanding the behaviour of functions over intervals and for proving important results in calculus.	U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	Acquire proficiency in multivariable calculus, including functions of two or more variables, partial derivatives, differentiability, and local linearity. They will also learn advanced topics such as maxima, minima, Lagrange Multipliers, and double and triple integrals.	E	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	Learn to apply advanced integration techniques such as integration by parts, integrating rational functions by partial fractions, and numerical integration methods like Simpson's rule to solve complex mathematical problems	Ар	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	Develop spatial visualization skills and a deep understanding of coordinate systems, including rectangular, polar, cylindrical, and spherical coordinates. They will also learn about the concept of change of variables using Jacobians, which is essential for solving problems in various coordinate systems.	Ap	PSO: 1, 2, 3, 4, 5, 6, 7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tuto rial (T)
1	Develop a strong understanding and proficiency in various calculus techniques, including related rates, local linear approximations, differentials, and the analysis of functions such as identifying increasing, decreasing, and concave regions.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C, P	L
2	Equip with problem-solving skills applicable to a wide range of mathematical scenarios, including applied maximum and minimum problems, evaluating definite integrals by substitution, finding the area between curves, and determining the length of plane curves and the area of surfaces of revolution.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	Ар	F, P	L
3	Gain a solid understanding of fundamental theoretical concepts in calculus, such as Rolle's and Mean Value Theorems, which are crucial for understanding the behaviour of functions over intervals and for proving important results in calculus.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C	L
4	Acquire proficiency in multivariable calculus, including functions of two or more variables, partial derivatives, differentiability, and local linearity. They will also learn advanced topics such as maxima, minima, Lagrange Multipliers, and double and triple integrals.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	Е	С, Р	L
5	Learn to apply advanced integration	PO: 1, 2,	Ар	F, C, P	L

	techniques such as integration by parts, integrating rational functions by partial fractions, and numerical integration methods like Simpson's rule to solve complex mathematical problems	4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7			
6	Develop spatial visualization skills and a deep understanding of coordinate systems, including rectangular, polar, cylindrical, and spherical coordinates. They will also learn about the concept of change of variables using Jacobians, which is essential for solving problems in various coordinate systems.	4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6	Ap	F, C, M	L

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 6	3	3	2	1	1	1	2	-	1	3	I	1	1	1	-

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			\checkmark	

Mar Ivanios College (Autonomous)

Discipline	MATHEMATICS							
Course Code	MIUK1MDCMAT1	MIUK1MDCMAT106.1						
Course Title	Quantitative Techn	iques and A	ptitude					
	(Basic Mathematic	s for Compe	titive Exam	inations)				
Type of Course	MDC	MDC						
Semester	Ι							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	3 hours	-	-	3			
Pre-requisites	Basic High School Ma	athematics.						
References	1. R. S. Aggarwal, Qu	antitative Apt	<i>itude</i> , S. Chan	d, New Delhi,	2017.			
	2. M Tyra and K. Kun Company Pvt Ltd, Ne			ker Maths, BSO	C Publishing			
	3. Rajesh Verma, <i>Fast Track Obective Arithmetic</i> , Arihant Publications (India) Ltd., New Delhi.							
Course Summary	for competitive exam percentage, profit and mensuration, probabil	The course discusses basic mathematics and quantitative techniques essential for competitive examinations. The course covers basic arithmetic techniques, percentage, profit and loss, time related problems etc. It also introduces the mensuration, probability and mathematics related to bank and market. The syllabus is aligned with the requirements of any standard competitive examination.						

56

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Basic Number Problems	15
	1	Number system, Basic arithmetic operations, BODMAS rule, HCF and LCM, Decimal Fractions, Simplification, Word problems based on numbers, Square roots and Cube roots, Average, Problems on Ages, Surds and Indices, Logarithms.	
II	Percentage and Proportion		15
	2	Percentage, Profit and Loss, Ratio and Proportion, Partnership, Pipes and Cisterns, Time, Work and Wages, Time and Distance, Boats and Streams, Problems on Trains, Alligation or Mixture, Simple Interest, Compound Interest, Area and Volume, Races and Games of skill.	
III		Elementary Mensurations and Probability	15
	3	Elementary Mensuration, Calendar, Clocks, Permutations and Combinations, Probability, True Discount, Banker's Discount, Heights and Distances, Stocks and Shares, Odd man out and series.	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basic arithmetic operations and acquire ability to solve number related problems.	U	1,2,3,5
CO-2	Understand concepts of percentage and proportion, different types of work and time related problems and acquire ability to solve them.	R	1,2,3,5
CO-3	Understand the basic mensuration, probability, mathematics related discounts and acquire ability to solve related problems.	Ap	1,2,3,5
CO-4	Acquire expertise to perform successfully in the mathematical/quantitative part of competitive examinations.	Ε	1,2,3,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0	(Lecture:Tutorial:Practical)
------------------------------------	------------------------------

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the basic arithmetic operations and acquire ability to solve number related problems.	PO 1,2,5	U	Р	L/T	
2	Understand concepts of percentage and proportion, different types of work and time related problems and acquire ability to solve them.	PO 1,2,5	R	Р	L/T	
3	Understand the basic mensuration, probability, mathematics related discounts and acquire ability to solve related problems.	PO 1,2,5	Ap	Р	L/T	
4	Acquire expertise to perform successfully in the mathematical/quantitative part of competitive examinations.	PO 1,2,5	Е	Р	L/T	

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	1	2	3		3				3	3			2		
CO 2	1	2	3		3				3	3			2		
CO 3	1	2	3		3				3	3			2		
CO 4	1	2	3		3				3	3			2		

58

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	~	✓	~	✓
CO 2	\checkmark	✓	✓	\checkmark
CO 3	✓	✓	✓	✓
CO 4	✓	✓	✓	\checkmark

SEMESTER - II

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

60

Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	MATHEMATICS					
Course Code	MIUK2DSCMAT150.1						
Course Title	Foundations of N	Mathematic	s - II				
Type of Course	DSC						
Semester	II						
Academic Level	100 - 199	100 – 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	4 hours	-	-	4		
Pre- requisites	 Basic different Basics of integ 				ctions		
	 Text: H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley& Sons. References: George B. Thomas, Ross L. Finney. Calculus and analytic geometry, 9th Edition, Addison-wesley publishing Company. K F Riley, M P Hobson, S J Bence. <i>Mathematical Methods for Physics and Engineering</i>, 3rd Edition, Cambridge University Press Mary L Boas. <i>Mathematics Methods in the Physical Sciences</i>, 3rd Edition,Wiley Erwin Kreyszig. <i>Advanced Engineering Mathematics</i>, 10th Edition, Wiley-India 						

Course	This course comprehensively explores topics in differentiation,
Summary	including derivatives of standard functions and their applications. It
	delves into various techniques of integration and thoroughly examines applications of integration.

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		Applications of derivatives	15			
	1	Chain rule and implicit differentiation	2			
	2	Related rates	3			
	3	Local linear approximation	2			
	4	Tangent lines to parametric curves	2			
	5 Tangent lines to polar curves					
	6 Derivatives of logarithmic functions, logarithmic differentiation					
	7	Differentiability of inverse functions, derivatives of exponential functions	2			
		opics in this module can be found in chapters 2, 6 and 10 ns 2.6, 2.7, 2.8, 2.9, 6.2, 6.3, 10.1, 10.3 of text.				
II		Analysis of functions	15			
	8	Increasing and decreasing functions and their analysis	2			
	9	concavity of functions, points of inflections of a function and applications	2			
	10	relative maxima and minima of functions, critical points	2			

	11	second derivative tests, multiplicity of roots and its geometrical interpretation	2
	12	Absolute maximum and minimum, their behavior on various types of intervals	2
	13	applications of extrema problems on infinite, infinite intervals and applied maximum minimum problems	2
	14	Indeterminate forms and L'Hopital's rule	3
		opics in this module can be found in chapters 3 and 6 secti 2, 3.3, 3.4, 3.5, 6.5 of text	ons
III		Integration	15
	15	Problem of calculating area of plane regions with curvilinear boundaries	2
	16	Antiderivatives, the indefinite integral, their properties,	2
	17	Integral curves, integration from the view point of differential equations	2
	18	Slop fields, the fundamental theorem of calculus part 1, relationship between definite and indefinite integrals,	2
	19	Mean value theorem for integrals, the fundamental theorem of calculus part 2,	2
	20	Integration by substitution, integration by parts	2
	21	trigonometric substitution and partial fractions	2
	22	hyperbolic functions	1
		opics in this module can be found in chapters 4, and 7 sect .2, 4,3, 4,4, 4,5, 4.6, 4.9, 7.2, 7.3, 7.4, 7.5, 7.8 of text.	ions
IV		Applications of integration	15
	23	Arc lengths parametric curves and arc length of polar curves	2
	24	Area between two curves	3
	25	Finding volumes of some three - dimensional solids by various methods like slicing, disks and washers	5

	26	Finding length of a plane curve	2
	27	Surface of revolution and its area	3
		opics in this module can be found in chapters 5 and 10 sect 2, 5.4, 5.5, 10.1, 10.3 of text	tions

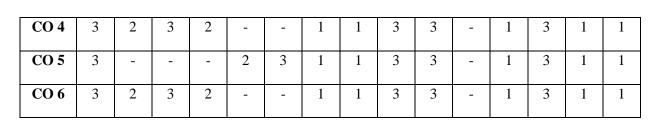
Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Apply the concept of differentiation in real life situation.	Ар	PSO-1,2,3, 4, 7, 8
CO-2	Define maxima, minima, critical points and points of inflection.	U	PSO-1,3, 4, 6, 7, 8
CO-3	Describe the integration of a function and learn its physical interpretation through various examples.	Ар	PSO-1,2,3, 4, 7, 8
CO-4	Demonstrate various application of integration	An	PSO-1,2, 3, 4, 7, 8
CO-5	Sketch curves using ICT tools.	Ар	PSO-1,5, 6, 7, 8
CO-6	Compute area, volume, length, arc length, area of surfaces using integration technique	Е	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)


CO	СО	PO/PSO	Cognitive	Knowledge	Lecture	Practical
No.			Level	Category	(L)/Tutorial (T)	(P)
CO1	Apply the concept of differentiation in real life	PO-1,2, 4,5, 6, 7	Ар	F, C	L	

	situation.					
CO 2	Define maxima, minima, critical points and points of inflection.	PO-1,2, 4,5, 6, 7	U	F, C, M	L	
CO3	Describe the integration of a function and learn its physical interpretation through various examples.	PO-1,2, 4,5, 6, 7	Ар	F, C, P	L	
CO 4	Demonstrate various application of integration	PO-1,2, 4,5, 6, 7	An	F,C, M	L	
CO 5	Sketch curves using ICT tools.	PO-1,2, 4,5, 6, 7	Ар	Р, М	L	
CO 6	Compute area, volume, length, arc length, area of surfaces using integration technique	PO-1,2, 4,5, 6, 7	Ε	F, C, P, M	L	

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS 08	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	1	1	3	3	-	1	3	1	1
CO 2	3	-	3	2	-	3	1	1	3	3	-	1	3	1	1
CO 3	3	2	3	2	-	-	1	1	3	3	-	1	3	1	1

65

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			✓
CO 2	1			✓
CO 3	1			✓
CO 4	1			✓
CO 5		✓		
CO 6	1			1

Mar Ivanios College (Autonomous)

Discipline	MATHEMATIC	MATHEMATICS						
Course Code	MIUK2DSCMAT151.1							
Course Title	Mathematics for Physical Sciences – II							
Type of Course	DSC	DSC						
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	4 hours	-	-	4			
Pre- requisites	Concept of vector numbers.	s, basic idea	of probabili	ity, idea of co	omplex			
Text Books	Texts: Text I: Anton, I H	Rivens S Da	vis Calculu	s 10 th Edition	n John Wiley			
	& Sons			5, 10 Luitio	n, john whey			
	Text II: Grewal,	Higher Engi	neering Mat	hematics, 42 ^r	nd edition			
	References:							
	1. George B. Thor geometry,	1. George B. Thomas, Ross L. Finney, <i>Calculus and analytic geometry</i> ,						
	9 th Edition, Addis	on-wesley p	ublishing Co	ompany.				
	2. K. F. Riley, M Methods for Phys							

	 University Press. 3. Mary L. Boas, <i>Mathematics Methods in the Physical Sciences</i>, 3rd Edition, Wiley. 4. Erwin Kreyszig, <i>Advanced Engineering mathematics</i>, 10thEdition, Wiley- India.
Course Summary	The course covers a comprehensive range of topics in Integration and its applications. It begins with the study of different techniques of Integration. Various functions are discussed. Integrations of various functions are studied. Application of integration are discussed along with Area between curves and Volume are studied. Concept of Vector fields are studied. Surface integrals and and its applications are discussed. Important theorems like Green's theorem, Stokes theorem and Divergence theorem are studied. Revision of Probability theory. Independent events and Bayes are studied. Revision of complex numbers. Complex functions are introduced. Analytic functions are explained. Cauchy's theorem, Cauchy's integral formula are discussed. Finally Residues and calculation of Residues are studied.

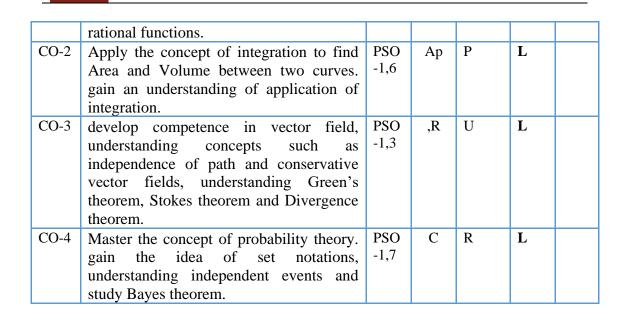
Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		Integration	10			
	1	The module should begin with introduction to indefinite integral, Integration techniques like substitution, by parts, trigonometric substitution are to be covered using Sections 4.3, 4.5 and 4.6.	5			
		Integrating trigonometric functions, trigonometric substitution, Integrating rational functions by Partial fractions are to be covered in Sections 7.1, 7.2, 7.3, 7.4 and 7.5.	5			
	[The topics in this module can be found in Chapter 4; Sections 4.2, 4.5, 4.6 & Chapter 7 : 7.1, 7.2, 7.3, 7.4, 7.5 of Text. I]					
II		Application of Integration & Vector Integration	20			

revolution must be covered as in section 5.5. ICT tools can be used to enhance effective learning.					
	Vector Fields, Line Integrals, Independence of Path and Conservative Vector Fields are introduced, Surface Integrals, Applications of Surface Integrals; Important theorems like the Greens theorem, Stokes Theorem and Divergence Theorem are discussed in Section 15.1 to 15.8. [All theorems in this module should be discussed without proof] ICT tools can be used to enhance affective learning	15			
[The topics in this module can be found in Chapter5, Sections 5.1, 5.2, 5.3 & 5.5 Chapter 13; section 13.6 Chapter 15; Sections 15.1 to 15.8 of Text I					
Probability					
Probability					
3	Introduction to Probability, Set notations are explained, Concept of independent events along with Bayes theorem are studied.				
	topics in this module can be found in Chapter 26; Sections 26. of Text II]	1 to			
		1 to 20			
	of Text II]				
26.6	Complex Analysis Concept of Complex numbers is revised, Complex functions are introduced, and Exponential functions of a complex	20			
	5.2, 5 Chap	 volumes involving integration in one variable. Area of revolution must be covered as in section 5.5. ICT tools can be used to enhance effective learning. Vector Fields, Line Integrals, Independence of Path and Conservative Vector Fields are introduced, Surface Integrals, Applications of Surface Integrals; Important theorems like the Greens theorem, Stokes Theorem and Divergence Theorem are discussed in Section 15.1 to 15.8. [All theorems in this module should be discussed without proof] ICT tools can be used to enhance effective learning. [The topics in this module can be found in Chapter5, Sections 5 5.2, 5.3 & 5.5 Chapter 13; section 13.6 Chapter 15; Sections 15.1 to 15.8 of Text 3 Introduction to Probability, Set notations are explained, Concept of independent events along with Bayes theorem are 			

Course Outcomes

69


No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	perform various operations on Integration, including substitution, integration by parts, trigonometric substitution. Gain the knowledge of partial fractions. Apply the integration in rational functions.	U	PSO-1,2
CO-2	Apply the concept of integration to find Area and Volume between two curves. gain an understanding of application of integration.	Ар	PSO-1,6
CO-3	develop competence in vector field, understanding concepts such as independence of path and conservative vector fields, understanding Green's theorem, Stokes theorem and Divergence theorem.	,R	PSO-1,3
CO-4	Master the concept of probability theory. gain the idea of set notations, understanding independent events and study Bayes theorem.	С	PSO-1,7
CO-5	Revise the concept of complex numbers, gain the concept of complex functions. finding limit of complex function, calculation of exponential function of complex variable.	E	PSO-1,5
CO-6	They will learn about derivatives of complex functions. Master the concept of Analytic functions, understanding Cauchy's theorem and Cauchy's integral formula and their applications. Master the concept of residues including their calculation.	С	PSO-1,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	perform various operations on Integration, including substitution, integration by parts, trigonometric substitution. Gain the knowledge of partial fractions. Apply the integration in	PSO -1,2	U	F, C	L	

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 2	PSO 4	PSO 5	PSO 6	PSO 7	PS O8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	1	3	2	3	3	2	1	3	1	3	3	2	3	2
CO 2	2	3	1	3	1	2	2	1	1	2	3	2	3	3	2
CO 3	1	2	1	3	1	2	3	2	2	3	1	1	2	2	1
CO 4	3	3	3	2	2	3	1	3	2	1	2	3	2	1	2
CO 5	2	3	2	1	3	3	3	2	3	3	2	2	2	3	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			✓	

Discipline	MATHEMATIC	CS							
Course Code	MIUK2DSCMAT152.1								
Course Title	Mathematics for	· Life Scien	ces - II						
Type of Course	DSC	DSC							
Semester	II								
Academic Level	100 - 199								
Course Details	Credit								
Details		per week per week Hours/We							
	4	4 hours	-	-	4				
Pre-requisites	1. High School L	evel Basic N	Aathematics						
	2. Basic Set Theo	ry, Function	18						
Course Summary	applications in va students delve in principles, produce logarithmic diffunderstanding in integration provi- and minima interpretations, p Differential equa- including linear mathematical mode	interpretations, paving the way for understanding optimization. Differential equations are introduced, covering various forms including linear and nonlinear, leading to discussions on mathematical modelling in discrete and continuous settings, and exploring applications in both differential equations and graph							
Text	Edward Batschele	et, Introduci	tion to Mathe	ematics for L	ife Scientists,				

_			

	Springer, 1973.						
	Chapter 8: Sections: 8.1 – 8.4 Chapter 9: Sections: 9.1 – 9.7						
	Chapter 11: Sections 11.1 – 11.8						
	Chapter 12: Sections: 12.1 – 12.3						
References	 S. T. Tan, <i>Finite Mathematics for the Managerial, Life and Social Sciences</i>, 9th Edition, Cengage Learning. Glenn Ledder, <i>Mathematics for the Life Sciences</i>, Springer. Raina S. Robeva, James R. Kirkwood, Robin L. Davies, Leon S. Farhy, Michael L. Johnson, Boris P. Kovatchev, and Marty Straume, <i>An Invitation to Bio mathematics</i>, ELSEVIER. Fred Brauer, Carlos Castillo-Chavez, <i>Mathematical Models in Population Biology and Epidemiology</i>, 2nd edition, Springer, New York, 2011. Michael Y Li, <i>An Introduction to Mathematical Modelling of Infectious Diseases</i>, Springer, 2018. 						
	6. Ivo M Foppa, A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology, Academic Press, 2017.						

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		Differentiation and Integration	15					
	1	Limit of a function	1					
		pecial limits						
	2	fferentiation by first principle						
	3	roduct rule						
		Quotient rule						

		Chain rule	2
	4	Implicit Differentiation	1
		Logarithmic Differentiation	1
	5	Higher order derivatives	1
	6	Basic rules in integration	4
II		Partial Differentiation	15
	1	Introduction,	3
	2	Partial Derivatives - Simple Problems,	6
	3	Maxima and Minima	6
III		Differential Equations	15
	1	Geometric Interpretation	3
	2	Differential equations of the form $y' = ay, y' = ay + b, y' = ay^2 + by + c, y' = k\frac{y}{x}$	6
	3	System of linear differential equations	3
	4	System of nonlinear differential equations	3
IV		Introduction to Mathematical Modelling	15
	1	Overview of mathematical modelling	1
	2	Discrete time linear models	2
	3	Discrete time non-linear models	2
	4	Modelling with a Differential Equation	6
	5	Modelling Using Graph Theory	4

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	demonstrate a strong understanding of fundamental calculus concepts including limits of functions,	R	PSO: 1, 2, 3, 4, 5, 6, 7
	differentiation principles, and basic rules in		

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	integration.		
CO-2	master differentiation techniques such as the product, quotient, and chain rules, as well as implicit and logarithmic differentiation, enabling them to solve	U	PSO: 1, 2, 3, 4, 5, 6, 7
	complex problems involving derivatives, especially into their disciplines.		
CO-3	calculate higher-order derivatives and understand their significance in analysing functions and their behaviour.	Ар	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	apply calculus concepts to solve optimization problems, including identifying maxima and minima and interpreting geometrically.	R	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	acquire the skills to solve various types of ordinary differential equations, including linear and nonlinear forms, and understand their applications in mathematical modelling.	С	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	gain the ability to model real-world scenarios using both differential equations and graph theory, and analyse discrete and continuous systems to make informed decisions.	С	PSO: 1, 2, 3, 4, 5, 6, 7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	OS4/O4	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria 1 (T)
1	demonstrate a strong understanding of fundamental calculus concepts including limits of functions, differentiation principles, and basic rules in integration.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	R	F, C	L
2	master differentiation techniques such as the product, quotient, and chain rules, as well as implicit and logarithmic differentiation, enabling them to solve complex problems involving derivatives, especially into their disciplines.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C, P	L
3	calculate higher-order derivatives and understand their significance in analysing functions and their behaviour.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	Ар	F, C, P	L
4	apply calculus concepts to solve optimization	PO: 1, 2, 3, 4, 5, 6,	R	C, P	L

	problems, including identifying maxima and minima and interpreting geometrically.	7 / PSO: 1, 2, 3, 4, 5, 6, 7			
5	acquire the skills to solve various types of ordinary differential equations, including linear and nonlinear forms, and understand their applications in mathematical modelling.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	С	Р	L
6	gain the ability to model real-world scenarios using both differential equations and graph theory, and analyse discrete and continuous systems to make informed decisions.	PO: 1, 2, 3, 4, 5, 6, 7 / PSO: 1, 2, 3, 4, 5, 6, 7	С	F, C, P	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS O7	PS O8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 2	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 3	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 4	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1
CO 5	3	3	2	1	1	1	2	1	1	3	1	1	1	1	1
CO 6	3	3	2	1	1	1	2	-	1	3	1	1	1	1	1

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

.

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				
CO 2	✓ ✓			✓ ✓
CO 3	✓			✓
CO 4		1		✓
CO 5		✓		✓
CO 6			1	

Discipline	MATHEMATICS							
Course Code	MIUK2DSCMAT153.1							
Course Title	Mathematics for So	ocial Science	es - II					
Type of Course	DSC							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit Lecture Tutorial Practical per week per week per week per week							
	4	4	-	-	4			
Pre-requisites	 Functions Differentiation 	on						
Course Summary	Mathematics and the being predominant. It covers several top techniques, applicati This course is mainly	The emphasis of this courses is on computational skills on Business Mathematics and their practical application, with practical application						
Prescribed Texts	 1.B M Aggarwal – Business Mathematics and Statistics, Ane Books Pvt Ltd, 2023. 2. D.C. Sancheti, V.K. Kapoor Business Mathematics, Sultan Chand & SonsPublications, 2006. 							
Reference	1. "Business Math	nematics" b	y Gary Cl	endenen and	l Stanley A.			

Books		Salzman, 13 th Edition, Pearson Publishers						
	2.	"Business Mathematics" by Cheryl Cleaves, Margie Hobbs, and						
		Jeffrey Noble, 9 th Edition, Pearson Publishers						
	3. "Essential Mathematics for Economics and Business" by Te							
		Bradley: 2 nd Edition, Wiley India Private Limited						

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		Interpolation and Extrapolation	12				
	1	Introduction, Importance, methods of interpolation – Newtons Forward and Backward method, Lagranges method of Extrapolation	12				
II		Integral Calculus	12				
	3	Introduction, General Rules, Some Standard results, Method of substitution, Partial fractions, Some standard substitutions, Integration by parts	12				
		[The topics to be discussed in this module can be found in Chapter 6 of Text 1]					
III	Mathematical Application in Business						
	4	Depreciation- methods of depreciation, partial year depreciation and changes in estimates, accelerated depreciation methods. Payroll cost calculations, Property tax calculations, exchange rates and currency conversion. [The topics to be discussed in this module can be found in Chapter 17 of Reference Text 2]	12				
IV		Basic Mathematics of Finance	12				
	5	Simple interest-Compound interest-Effective rate of interest- Present Value-Net Present Value-Future Value-Perpetuity- Annuities-Sinking Funds-Calculations of EMI-Calculation of returns under normal rate of return, effective rate of return and Compound Annual Growth Rate (CAGR) [The topics to be discussed in this module can be found in Chapter 14 of Reference Text 2]	12				
V		Index Numbers	12				

6	 Index Numbers: Definition, Simple and composite index numbers, types of index numbers, methods of construction of price index numbers, Laspeyer's price index number, Paasche's price index number, Fisher ideal index number, construction of cost living index, consumer price index,whole sale index, share price index. [The topics to be discussed in this module can be found in Chapter 6 of Text 1] 	12
	[Wherever possible, ICT enabled tools should be used]	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Compute the problems involving interpolation and extrapolation	Ар	PSO-1,2,3
CO-2	Integrate different functions and apply integration techniques to solve various problems related to it	Ар	PSO-1,2,3
CO-3	Estimate property tax, exchange rates and determine currency conversion	E	PSO-1,2,3
CO-4	Classify different annuinities , sinking funds and compute mathematical problems related to it	U	PSO-1,2,3
CO-5	Construct cost living index and compute problems related to index numbers	Е	PSO-1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Compute the	РО	Ap	F, C	L	

	problems involving interpolation and extrapolation	1,2/PSO- 1,2,3				
2	Integrate different functions and apply integration techniques to solve various problems related to it	PO 1,2/PSO- 1,2,3	Ар	F, C, P	L	
3	Estimate property tax, exchange rates and determine currency conversion	PO 1,2/PSO- 1,2,3	Е	С	L	
4	Classify different annuities, sinking funds and compute mathematical problems related to it	PO 1,2/PSO- 1,2,3	U	С, Р	L	
5	Construct cost living index and compute problems related to index numbers	PO 1,2/ PSO- 1,2,3	E	F, C	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS	PO													
	O1	O2	O3	O4	O5	06	O7	O8	1	2	3	4	5	6	7
CO 1	3	3	3	-	-	2	1	1	3	3	-	1	-	2	1

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO	3	3	3	-	-	-	1	1	3	3	2	-	-	1	-
2															
CO	3	3	3	-	-	-	1	1	3	3	-	1	-	2	-
3															
CO	3	3	3	2	-	-	1	1	3	3	-	2	1	-	-
4															
CO	3	3	3	-	-	2	1	2	3	3	-	2	1	-	-
5															

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			✓
CO 2	1			1
CO 3	1			✓
CO 4		✓		✓
CO 5		✓		\checkmark

Discipline	MATHEMATIC	CS							
Course Code	MIUK2DSCMAT154.1								
Course Title	Mathematical M	Mathematical Methods for Finance - II							
Type of Course	DSC								
Semester	II								
Academic Level	100 - 199								
Course Details	Credit	Credit Lecture Tutorial Practical Total per week per week per week							
	4	3 hours	1	2 hours	5				
Pre-requisites	1. Functions 2. Differenti	of one varia	ıble						
Course Summary	This course at the with the mathema understanding and about Exponentia functions and its equations and diff second semester u	tical tools a d analysing of l and logarit application, ference equa	nd technique economic co hmic functio Integral Calo tions. This c	es necessary f ncepts and m ons, multivari culus, differe course is desi	for nodels. It talks iable ntial gned for				
Prescribed Text	Knut Sydsaeter, F Analysis, Pearson		mond: <i>Math</i>	ematics for E	conomic				
Reference Textbooks	 Publishers, D 2 Taro Yamano Survey, PHI, 3 Chiang A.C. 	-2/15. Krisht e, Mathema New Delhi. and K.W	nan Nagar, N tics for Ec ainwright,	New Delhi onomists, A Fundamental	omics, AITBS n Elementary Methods of ill, New York,				

2005.(cw)
4 Dowling E.T, Introduction to Mathematical Economics, 2nd
Edition, Schaum's Series, McGraw-Hill, New York, 2003(ETD)

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Functions of Several variables and its Applications	12
	1	Functions of Several Variables: Functions of two or more variables, geometric representations of functions of several variables, partial derivatives with two variables, partial derivatives and tangent planes, partial derivatives with many variables, partial derivatives in Economics, linear models with quadratic objectives.	7
	2	The chain rule, more general chain rules, derivatives of functions defined implicitly, partial elasticities, homogeneous functions of two variables, linear approximations and differentials. Chapter 15 Section 1-7, Chapter 16 Sections 1-5, 8, 9	5
II		Integration	12
	3	Integration: Areas under curves, indefinite integrals, the definite integral, economic application of integration. Further Topics in Integration: Integration by parts, integration by substitution, extending the concept of the integral, a note on income distribution.	12
		Chapter 10 and 11	
III		Difference Equations	12
	4	Difference Equations: First order difference equations, compound interest and present discounted values, linear equations with a variable coefficient, second order equations, second order equations with constant coefficients.	12
		Chapter 20	
IV		Differential Equations	12
	5	Differential Equations: First order differential equations, the direction is given – find the path, separable differential equations-I, separable differential equations-II, first order linear differential equations-I, first order linear differential equations-II, qualitative theory and stability, second order differential equations, second order differential equations with constant coefficients.	12
		Chapter 21	
V		Exponential and Logarithmic Functions:	12
	6	Exponential and Logarithmic Functions: The natural	

	exponential function, the natural logarithmic function, generalizations, applications of exponentials and logarithms, compound interest and present discounted values.	
	Chapter 14 Sections 1-4	
	[Wherever possible, ICT enabled tools should be used]	

No.	Upon completion of the course the graduate will be able	Cognitive	PSO
	to	Level	addressed
CO-	Apply the concept of partial derivatives and evaluate	Ap	PSO-1,2,3
1	partial elasticities, and differentials		
CO-	Explore the ideas of Integral calculus in evaluating	Ap	PSO-1,2,3
2	income distribution and apply different techniques of		
	integration		
CO-	Discuss and illustrate various problems related to	Ap	PSO-1,2,3
3	difference equations		
CO-	Evaluate first order and second order differential	Е	PSO-1,2,3
4	equations		
CO-	Apply the concept of exponential and logarithmic	Ap	PSO-1,2,3
5	functions in Economic models		
5	functions in Economic models		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	OSA /OA	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Apply the concept of partial derivatives and evaluate partial elasticities, and differentials	PO 1,2/PSO- 1,2,3	Ар	F, C	L	
2	Explore the ideas of Integral calculus in evaluating income distribution and apply different techniques of integration	PO 1,2 / PSO-1,2,3	Ар	F, C, M	L	
3	Discuss and illustrate various problems related to difference equations	PO 1,2 / PSO-1,2,3	E	С, М	L	
4	Evaluate first order and second order differential equations	PO 1,2 /PSO-1,2,3	E	С, М	L	
5	Apply the concept of exponential and logarithmic functions in Economic models	PO 1,2 / PSO-1,2,3	Ар	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	-	2	1	-	-	3	3	-	-	-	-	-
CO 2	3	3	3	-	2	2	2	1	3	3	-	-	1	-	2
CO 3	3	3	3	-	2	-	1	2	3	3	-	1		2	-
CO 4	3	3	3	-	1	-	-	2	3	3	-	2	1	-	-
CO 5	3	3	3	-	-	2	1	1	3	3	-	-	2	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			\checkmark
CO 3	✓	1		\checkmark
CO 4		1		✓
CO 5		1		

Discipline	MATHEMATIC	CS						
Course Code	MIUK2DSCMA	MIUK2DSCMAT155.1						
Course Title	Linear Algebra a	and Numer	ical Approx	timations				
Type of Course	DSC							
Course								
Semester	II							
Academic	100 - 199							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	4 hours	-	-	4			
Pre-requisites	1. Higher Second	ary level ma	atrices and a	lgebra of mat	rices			
	2. Solving equation	ons						
Course	This mathematic	s course pro	ovides a con	nprehensive	understanding			
Summary	of matrix algebr							
	matrices, element computation of	•	-					
	Students will lear			0	• 1			
	homogeneous and	d homogen	eous, and ex	plore conce	pts of vectors,			
	linear independe		-		-			
	characteristic equilibrium characteristic equili	-	-					
	diagonalization			-	-			
	Additionally, the				0 0			
	and transcendenta	-	_	-				
	the Newton-Rap solving linear si							

	emphasized through techniques like Gauss elimination, LU- factorization, least square method, and matrix eigenvalue problems, ensuring students gain both theoretical knowledge and practical problem-solving skills.
Texts	 Advanced Engineering Mathematics, Erwin Kreyszig, Wiley International Edition, 9th edition. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, 39th edition. Chapter 7: Sections 7.1 – 7.9 of Text 1. Chapter 8: Sections 8.1 – 8.5 of Text 1. Chapter 20: Section 20.1 – 20.3, 20.5 – 20.9 of Text 1 Sections 27.1 – 27.4, 27.6 of text 2.
References	 Gilbert Strang, Linear Algebra and its Applications, Fourth Edition, Wellesley-Cambridge Press. David C Lay: Linear Algebra, Pearson. T S Blyth, E F Robertson: Linear Algebra, Springer, Second Edition.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Matrices and Linear Systems	15
	1	Types of matrices, submatrices	2
	2	Elementary row operations	1
		Echelon form	3
	3	Inverse of a matrix using elementary operations	2
	4	Systems of Linear equations	1
		non-homogeneous systems	3
		homogeneous systems	3
		Matrix Eigen Value problems	15
II	1	Vectors	2
		Linear independence and dependence of vectors	2
	2	Characteristic equations	2
		Eigen values and eigen vectors	3
	3	Cayley Hamilton Theorem	2
	4	Diagonalization	2
		diagonalization of symmetric matrices	2
III		Numerical Linear Algebra	15
	1	Gauss Eliminations	2
		LU- factorization	3

	2	Matrix Inversion	2			
	3	Solution by Iteration, Least square method	2			
	4	4 Matrix eigen value problems				
	5	Tridiagonalization and QR – factorization	3			
IV		Numerical Methods	15			
	1	Solution of algebraic and transcendental equations – Regula	3			
		Falsi method,				
		Newton Raphson method.	3			
	2	Approximate solution of equations- Horner's method.	4			
	3	Solution of linear simultaneous equations – Iterative methods.	5			

No.	Upon completion of the course the graduate will be able to	Cognitiv e Level	PSO addressed
CO-1	Demonstrate proficiency in manipulating matrices, including identifying types of matrices, performing elementary row operations, and determining submatrices, leading to a deep understanding of matrix algebra fundamentals.	U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	Gain a comprehensive understanding of vector spaces, including concepts of vectors, linear independence, and dependence, enabling them to analyze and manipulate vectors in various mathematical contexts.	An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-3	Demonstrate competency in eigenvalue analysis, including computing characteristic equations, determining eigenvalues and eigenvectors, and applying the Cayley-Hamilton Theorem, leading to the understanding of diagonalization and diagonalization of symmetric matrices.	U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	Acquire proficiency in numerical methods for solving algebraic and transcendental equations, such as the Regula Falsi method, Newton-Raphson method, and approximate solution techniques like Horner's method, providing them with tools for practical problem-solving in various mathematical scenarios.	E	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	Learn to apply advanced techniques such as tridiagonalization, QR-factorization, and the least square method to solve matrix eigenvalue problems and linear simultaneous equations, fostering their ability to apply mathematical concepts to real-world problems.	Ар	PSO: 1, 2, 3, 4, 5, 6, 7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

C	00				
C O No ·	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
1	Demonstrate proficiency in manipulating matrices, including identifying types of matrices, performing elementary row operations, and determining submatrices, leading to a deep understanding of matrix algebra fundamentals.	PO: 1, 2, 4, 5, 6 PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C, P	L
2	Gain a comprehensive understanding of vector spaces, including concepts of vectors, linear independence, and dependence, enabling them to analyze and manipulate vectors in various mathematical contexts.	PO: 1, 2, 4, 5, PSO: 1, 2, 3, 4, 5, 6, 7	An	F, P	L
3	Demonstrate competency in eigenvalue analysis, including computing characteristic equations, determining eigenvalues and eigenvectors, and applying the Cayley- Hamilton Theorem, leading to the understanding of diagonalization and diagonalization of symmetric matrices.	PO: 1, 2, 4, 5, PSO: 1, 2, 3, 4, 5, 6, 7	U	F, C, P	L
4	Acquire proficiency in numerical methods for solving algebraic and transcendental equations, such as the Regula Falsi method, Newton-Raphson method, and approximate solution techniques like Horner's method, providing them with tools for practical problem-solving in various mathematical scenarios.	PO: 1, 2, 4, 5, PSO: 1, 2, 3, 4, 5, 6, 7	Ε	C, P	L
5	Learn to apply advanced techniques such as tridiagonalization, QR-factorization, and the least square method to solve matrix eigenvalue problems and linear simultaneous equations, fostering their ability to apply mathematical concepts to real-world problems.	PO: 1, 2, 4, 5, PSO: 1, 2, 3, 4, 5, 6, 7	Ар	F, C, M	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

PSO	PSO	PSO	PSO	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	РО
1	2	3	4	05	O6	07	08	PUI	PO2	PUS	PU4	P05	PU0	7

CO 1	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

•

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		~		\checkmark

Discipline	MATHEMATIC	CS .									
Course Code	MIUK2MDCMA	MIUK2MDCMAT156.1									
Course Title	Data Interpretat	Data Interpretation and Logical Reasoning									
Type of Course	MDC	MDC									
Semester	Π	I									
Academic Level	100 - 199	100 - 199									
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week						
	3	3 hours	-	-	3						
Pre-requisites	Basic High School	Mathematics									
References		 Nishit K Sinha, Data Interpretation for CAT, Pearson, Noida, 2023. Nishit K Sinha, Logical Reasoning for CAT, Pearson, Noida, 2023. 									
Course Summary											

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Data Interpretation	15
	1	Introduction to Data Interpretation, Developing the skills, Data sufficiency, Logical Venn diagrams, Tabulation, Bar Graphs, Pie Chart, Line Graphs, Radar Graphs, Mixed Graphs, Caselets. Practising and Mastering Data Interpretation through exercises. (Foundation/Moderate/Advanced Exercises)	

II		Logical Reasoning	10				
	Arra form reas	gical Reasoning: Linear Arrangement, Circular angement, Tabular Arrangement, Logical links, Group nation, syllogism, coding-decoding, logic and data-based soning. ctical Exercises.					
III	Analytical and Verbal Reasoning 2						
	mak and Vert and Cou	alytical Reasoning: Blood relation, Directions decision king, Input-output, cubes and dice, Series (letter, number mixed), Boolean logic. bal Reasoning: Statement and Assumptions, Statement Conclusions, Statement and Arguments, Statement urse of action, Cause and Effect, Theme detection. ctical Exercises.					

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand different methods to represent data and acquire skills to classify and interpret them and solve the related problems.	U	PSO- 1,2,3,5
CO-2	Understand the different types of logical reasoning problems and acquire ability to solve them.	U	PSO 1,2,3,5
CO-3	Understand the analytical reasoning and verbal reasoning problems and acquire ability to solve them.	U	PSO 1,2,3,5
CO-4	Acquire expertise to perform successfully well in data interpretation and reasoning part of competitive examinations.	Ар	PSO 1,2,3,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.		CO			DO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand	different	methods	to	PO	U	Р	L/T	

	represent data and acquire skills to classify and interpret them and solve the related problems.	1,2,5				
2	Understand the different types of logical reasoning problems and acquire ability to solve them.	PO 1,2,5	U	Р	L/T	
3	Understand the analytical reasoning and verbal reasoning problems and acquire ability to solve them.	PO 1,2,5	U	Р	L/T	
4	Acquire expertise to perform successfully well in data interpretation and reasoning part of competitive examinations.	PO 1,2,5	Ар	Р	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO 6	PO7
CO 1	3	2	3		3				3	3			2		
CO 2	3	2	3		3				3	3			2		
CO 3	3	2	3		3				3	3			2		
CO 4	3	2	3		3				3	3			2		

Correlation Levels:

Level	Correlation			
- Nil				
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				
CO 2				
CO 3				
CO 4				

SEMESTER III

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

Discipline	MATHEMATIC	CS						
Course Code	MIUK3DSCMAT200.1							
Course Title	Advanced Calcu	lus						
Type of Course	DSC							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit	Credit Lecture Tutorial Practical Total per week per week per week						
	4	3 hours	-	2 hours	5			
Pre- requisites	Basic Calculus							
Course Summary	The summary of a typically found in with a deeper of applications across crucial for advan- in science, engine systems involve r	n an advand understandin ss various d ced studies neering, eco	ed calculus ng of math isciplines. U in mathematonomics, an	course, prov ematical and nderstanding tics, as well d other disc	viding students alysis and its geach topics is as applications			
Text	2. J. Stewar 7 th Edition	mas, R. L. F Publishing C t, <i>Calculus v</i> 1, Cengage I	Finney, <i>Calce</i> ompany. <i>vith Early Tr</i> ndia Private	ulus, 9 th Editi ranscendenta	ion, Addison-			

Detailed Syllabus:

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

Unit	Content	Hrs			
	Conics	15			
1		1			
2	equations of parabolas in standard position	1			
3	equations of ellipses in standard position	1			
4		1			
5		2			
6	asymptotes of hyperbolas	1			
7	translating conics	1			
8	reflections of conics	1			
9	applications	1			
10	rotation of axes and eliminating the cross-product term from	2			
	the equation of a conic				
11	polar equations of conics	3			
	Functions of two or more variables	15			
1	Level Curves & Level Surfaces	1			
2	Limits along curves	1			
3	Open and closed sets, general limits of functions of two	1			
	variables				
⁴ Continuity					
5	Extensions to three variables	1			
6	Partial derivatives of functions of two variables, the partial derivative functions partial derivative notation	2			
7		2			
		2			
		2			
)	Differentials.	2			
10	Chain rules for partial derivatives	2			
	Multiple Integrals	15			
1	Extrema, Bounded sets,	1			
2	The Extreme-Value Theorem, Finding Relative Extrema,	3			
3	The Second Partials test, Finding Absolute Extrema on Closed	2			
		1			
4	Extremum Problems With Constraints	1			
5	Lagrange Multipliers, Three Variables and One Constraint.	3			
6	Double Integrals – Volume, Evaluating Double Integrals	3			
7	Properties of Double Integrals	2			
	Multivariable Calculus	15			
1	Traces Of Surfaces	1			
	2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 1 2 3 10 11 1 2 3 10 10 11 1 2 3 10 10 11 1 2 3 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1	1 Conic sections: definitions and examples 2 equations of parabolas in standard position 3 equations of ellipses in standard position 4 equations of hyperbolas in standard position 5 rotation of axes; second-degree equations at standard positions 6 asymptotes of hyperbolas 7 translating conics 8 reflections of conics 9 applications 10 rotation of axes and eliminating the cross-product term from the equation of a conic 11 polar equations of two or more variables 1 Level Curves & Level Surfaces 2 Limits along curves 3 Open and closed sets, general limits of functions of two variables 4 Continuity 5 Extensions to three variables 6 Partial derivatives of functions of two variables, the partial derivative functions, partial derivative notation, 7 Implicit partial differentiability and Continuity, Differentiability, Differentiability, Differentiability, Differentiability and Continuity, Differentiability, Differentiability, Differentiability, Differentiability and Continuity, Differentiability, Differentiability, Differentiability, Differentiability, Differentiability and Continuity, Differentiability, Differentiability, Differentiability, Differentiabili			

	2	The Quadric Surfaces	2
IV	3	Translations of Quadric Surfaces	2
1 V	4	Reflections of Surfaces in 3-space.	2
	5	Definition of a Triple Integral,	1
	6	Properties, Definition of A Triple Integral,	1
	7	Evaluating Triple Integrals Over More General Regions,	2
	8	Volume Calculated as a Triple Integral.	2
	9	Jacobians in two variables.	2

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	to get the awareness of co-ordinate system in real life	C, U	PSO- 1,2,5,7
CO-2	Study the fundamental facts in Functions of two or more variables.	R, U	PSO-2,5,6
CO-3	Learn to evaluate multiple integrals and get a knowledge on calculus.	Ap, R	PSO-3,6
CO-4	Learn to get the awareness of Multivariable calculus	U, R	PSO-2,6
CO-5	Develop expertise and skills in the use of mathematical software and computational tools and applying them in each module.	A, E	PSO-6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cogni tive Level	Knowle dge Catego ry	Lecture (L)/ Tutorial (T)	Practica l (P)
1	to get the awareness of co- ordinate system in real life		C, U		L	
2	Study the fundamental facts in Functions of two or more variables.		R, U		L	
3	Learn to evaluate multiple integrals and get a knowledge		Ap, R		L	

	on calculus.			
4	Learn to get the awareness of Multivariable calculus	U, R	L	
5	Develop expertise and skills in the use of mathematical software and computational tools and applying them in each module.	A, E	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	-	1	-	3	-	2	3	1	3	1	-	-	-
CO 2	3	-	1	-	-	2	-	1	2	-	-	-	-	-	-
CO 3	-	-	1	-	2	-	-	-	1	2	-	-	-	-	-
CO 4	-	-	2	3	-	-	-		2	1	-	-	-	-	-
CO 5	-	1	-	-	-	-	2		1	-	2	-	-	-	-
CO 6	-	-	-	2	-	3	-	-	3	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	1	1		\checkmark
CO 3	1			\checkmark
CO 4		1		✓
CO 5		~		\checkmark
CO 6	1		-	

Discipline	MATHEMATICS								
Course Code	MIUK3	MIUK3DSCMAT201.1							
Course Title	Mathen	Mathematics for Physical Sciences - III							
Type of	DSC								
Course									
Semester	III								
Academic	200 - 29	9							
Level									
Course	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week				
Details			per week	per week					
	4 4 hours 4								
Pre- requisites	Element	Elementary Matrix theory, Differentiation, Vectors and Series							
	Texts:								
	Text I :	B.S. Grewal, <i>Highe</i>	r Engineeri	ng Mathem	atics, 42 nd Edition,				
		Khanna Publishers.							
	Text II : & Sons	Text II : Anton, I Bivens, S Davis. Calculus, 10 th Edition, John Wiley & Sons							
Text Book	Referen	References:							
Text Book1. K. F. Riley, M. P. Hobson, S. Methods for Physics and En Cambridge University Press.2. George. B. Afken, Hans. J. W					, 3 rd Edition,				

	 Mathematical Methods for Physicists, 7th Edition, Academic Press. 3. Mary L. Boas, Mathematical Methods in the Physical Sciences, Third Edition, John Wiley &Sons. 4. Erwin Kreyszig, Advanced Engineering Mathematics, 10thEdition, Wiley-India.
Course Summary	The course covers a comprehensive range of topics in Differential equaion, Fourier series and Fourier transforms. Matrices and determinants are reviewed. Concept of Eigen values are introduced. Properties of Eigen values are given(only statements), Eigen vectors are introduced. Calculation of Eigen vectors.Cayley Hamilton theorem is applied. Diagonal form of a matrix, Reduction to Diagonal form. Differential equations are introduced. Solving differential equations. Exact differential equation and its are studied. Equation reducible to exact form. Order and degree of differential equations are studied. Equations of first order and higher degree are given. Clairaut's equation are introduced. Complementary function and Particular integral are studied. Linear dependence of solution. Introduction to vector valued functions. We can move to derivatives of such functions. Vector equations of tangent lines to graphs and derivatives of dot and cross products of functions are to be discussed; while results on integration may be avoided. Directional derivatives and vector operator Gradient are studied. Fourier series and Fourier transform are studied.

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		Linear Algebra	8			
	1	Introduction to Determinants and Matrices, Eigen Values, Properties of Eigen Values (Statements only), Eigen vectors	5			
		Cayley-Hamilton Theorem (Statement only), Reduction to Diagonal Form.	3			
	[The topics in this section can be found in Chapter I ; Sections 2.12,					

	2.13,	2.14, 2.15, 2.16 of the Text I]	
II		Ordinary Differential Equations & Vector Differentiation	17
	2	Definitions, Operator D, Rules for finding Complementary function, Rules for finding the Particular integrals.	10
		After an introduction to vector valued functions in Section 12.1, we can move to derivatives of such functions in Section 12.2.Derivatives of dot and cross product of functions are to be discussed. Section 13.6 will provide material on Directional derivative and Gradient.	7
	13.10 (The	topics in this module can be found in Chapter 13 Sections 13 of Text. 1] topics in this module can be found in Chapter 12; sec 12.2 and Chapter 13; section 13.6 of Text. II)	
III		Abstract Algebra	15
	3	Introduction and Examples, Binary operations, Groups and Subgroups (only statements of theorems). Cyclic groups (Only statements of the theorems except Theorem 6.1) Groups of Permutations (exclude the section Cayley's Theorem)	
	-	topics in this module can be found in Chapter 1 ons 1.1, 1.2, 1.4, 1.5, 1.6, Chapter II Section 8 of III.)	
IV		Fourier Series and Fourier Transform	20
	4	Introduction, Euler's Formulae (without proof), Conditions for a Fourier Expansion, Functions having Points of Discontinuity, Change of Interval, Even and Odd Functions, Half Range Series,	15
		Fourier Transforms, Properties of Fourier Transforms(Statements only)	5
	to 10.	topics in this module can be found in Chapter 10 [sections 10 7] and pter 22[sections22.4, 22.5]of the Text I.]	.1

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Master the concept of Eigen values and Eigen vectors. Calculation of Eigen vectors. Gain the understanding of Cayley Hamilton theorem. Apply diagonalisation.	R	PSO1,3
CO-2	Understanding differential equation. Develop	Ap,	PSO2,5

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	competence in solving differential equation. Understanding different type of differential equations and its solution. Gain the concept of linear dependence.		
CO-3	Gain the concept of vector functions. Able to derive vector functions. Gain the concept of directional derivative. Understanding to use the operator Gradient.	An	PSO3,5
CO-4	Gain the concept Fourier series, calculation of Fourier series. Master the properties of Fourier series. Gain the idea of half range series.	U	PSO1,2
CO-5	Gain the concept of Fourier Transform. Calculation of Fourier transform. Understanding properties of Fourier transform.	E	PSO1,7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

С	СО					
0		0	ve	lge 'y	(I)	Ð
No.		PO /PSO	Cognitive Level	Knowledge Category	Lecture (Futorial	Practical (P)
		PC	Co Co	Kno Ca	Lect	Prae
CO -1	Master the concept of Eigen values and	PSO1	R	F, C		
-1	Eigen vectors. Calculation of Eigen vectors.	,3				
	Gain the understanding of Cayley Hamilton theorem. Apply diagonalisation.					
CO	Understanding differential equation.	PSO2	Ap,	Р		
-2	Develop competence in solving differential	,5				
	equation. Understanding different type of					
	differential equations and its solution. Gain					
<u> </u>	the concept of linear dependence.	Daoa				
CO -3	Gain the concept of vector functions. Able	PSO3 ,5	An			
-3	to derive vector functions. Gain the concept	,5				
	of directional derivative. Understanding to use the operator Gradient.					
CO	Gain the concept Fourier series, calculation	PSO1	U	R, U		
-4	of Fourier series. Master the properties of	,2				
	Fourier series. Gain the idea of half range					
	series.					
CO -5	Gain the concept of Fourier Transform.	PSO1	E	F, C		
-5	Calculation of Fourier transform.	,7				
	Understanding properties of Fourier transform.					
	ualisionii.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PS O7	PS O8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	3	2	2	2	3	2	1	2	3	3	3	3	2	2
CO 2	3	2	2	3	3	2	3	3	1	3	2	2	2	1	2
CO 3	3	1	1	3	1	3	3	2	2	3	1	1	3	2	1
CO 4	1	3	2	2	1	3	1	3	2	2	3	3	2	1	3
CO 5	2	3	2	1	3	2	1	3	1	3	2	2	2	3	2
CO 6	1	3	2	2	1	3	1	3	2	2	3	3	2	1	3

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	<i>✓</i>	<i>✓</i>		<i>✓</i>
CO 2	1	1		\checkmark
CO 3	1	1		\checkmark
CO 4	1	✓		✓
CO 5	1	1		\checkmark
CO 6	1	1	-	\checkmark

Discipline	MATH	MATHEMATICS						
Course Code	MIUK3I	MIUK3DSCMAT202.1						
Course Title	Mathem	atics for Life	Sciences - III					
Type of Course	DSC							
Semester	III							
Academic Level	200 - 299	200 - 299						
Course Details	Credit	Lecture per	Tutorial	Practical	Total			
		week	per week	per week	Hours/Week			
	4	4 hours	-	-	4			
Pre-requisites	1. Basic	High School N	Mathematics					
	2.							
Course Summary	concepts data repr ogives, visualizit including equip str Correlati relations extensive variables binomial techniqu	2. This course provides a comprehensive exploration of essential concepts in data analysis and statistical inference. Beginning with data representation techniques such as bar diagrams, histograms, ogives, and pie charts, students gain a solid foundation in visualizing data. Measures of central tendency and dispersion, including mean, median, mode, standard deviation, and variance, equip students with tools to understand the distribution of data. Correlation and regression analysis deepen understanding of relationships between variables. Probability theory is covered extensively, including events, conditional probability, and random variables, leading to discussions on common distributions like binomial, Poisson, and normal distributions. Statistical inference techniques, including hypothesis testing and ANOVA, provide students with the skills to draw meaningful conclusions from data						

	and make informed decisions.						
Text	Myra L. Samuels, Jeffery A. Witmer, Andrew A. Schaffner,						
Text	Statistics for Life Sciences, 5 th edition, PEARSON.						
	Chapter 1: Sections $1.1 - 1.3$						
	Chapter 2: Sections $2.1 - 2.9$ Chapter 3: Sections $1.1 - 3.7$						
	Chapter 4: Sections $4.1 - 4.5$ Chapter 5: Sections $5.1 - 5.2$						
	Chapter 6: Sections $6.1 - 6.7$						
	Chapter 7: Sections 7.1 – 7.5 Chapter 11: Sections 11.1 – 11.7						
D.f.	Chapter 12: Sections 12.1 – 12.3						
References	 S. T. Tan, <i>Finite Mathematics for the Managerial, Life and Social Sciences</i>, 9th Edition, Cengage Learning. Glenn Ledder, <i>Mathematics for the Life Sciences</i>, Springer. Raina S. Robeva, James R. Kirkwood, Robin L. Davies, Leon S. Farhy, Michael L. Johnson, Boris P. Kovatchev, and Marty Straume, <i>An Invitation to Bio mathematics</i>, ELSEVIER. Myra L. Samuels, Jeffery A. Witmer, <i>Statistics for Life Sciences</i>, 3rd edition, Prentice Hall. 						

Detailed Syllabus:

Module	Unit	Content	Hrs	
Ι	Introduction to Statistics			
	1	Data representation- bar diagrams,	2	
		histogram,	1	
		ogives,	1	
		pi- charts,	1	
	2	Central tendency measures- mean, median, mode, Arithmetic Mean,	5	
	3	Dispersion Measures- SD and variance, Correlation and regression.	5	
II	Introduction to probability			
	1	Events, probability of an event, types of events,	4	

	2	addition theorem,	2
	3	conditional probability,	2
		multiplication theorem,	2
	4	Random variables, discrete and continuous random variables.	5
III	Standard Probability Distributions		
	1	Binomial distribution,	5
	2	Poison distribution,	5
	3	Normal distribution	5
IV		ANOVA	
	1	Statistical Inference - Testing,	6
	2	One way ANOVA,	5
	3	two-way ANOVA	4

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Demonstrate proficiency in representing data using various graphical methods such as bar diagrams, histograms, ogives, and pie charts, enhancing their ability to visualize and interpret data effectively.	R	PSO: 1, 2, 3, 4, 5, 6, 7, 8
CO-2	Comprehend measures of central tendency (mean, median, mode) and dispersion (standard deviation and variance), enabling them to describe the spread and distribution of data accurately.	U	PSO: 1, 2, 3, 4, 5, 6, 7, 8
CO-3	Master fundamental concepts of probability theory, including events, conditional probability, and random variables (both discrete and continuous), allowing them to analyse uncertain events and make informed decisions.	Ар	PSO: 1, 2, 3, 4, 5, 6, 7, 8
CO-4	Apply the knowledge of common probability distributions such as the binomial, Poisson, and normal distributions to model and analyse real-world phenomena accurately.	R	PSO: 1, 2, 3, 4, 5, 6, 7, 8

CO-5	Analyse relationships between variables through correlation and regression analysis, enabling them to quantify and interpret associations within data	С	PSO: 1, 2, 3, 4, 5, 6, 7, 8
CO-6	sets effectively. Develop the ability to perform hypothesis testing and conduct ANOVA tests (both one-way and two-way), empowering them to draw meaningful conclusions from data and make statistical inferences about populations.	С	PSO: 1, 2, 3, 4, 5, 6, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

С	СО				
0 No		SO	tive el	edge ory	e (L) l (T
No.		PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)) Tutorial (T)
1	Demonstrate proficiency in representing data using various graphical methods such as bar diagrams, histograms, ogives, and pie charts, enhancing their ability to visualize and interpret data effectively.	PO: 1, 2, 3, 4, 5, 6, 7, 8 / PSO: 1, 2, 3, 4, 5, 6, 7, 8	R	F, C	L
2	Comprehend measures of central tendency (mean, median, mode) and dispersion (standard deviation and variance), enabling them to describe the spread and distribution of data accurately.	PO: 1, 2, 3, 4, 5, 6, 7, 8 / PSO: 1, 2, 3, 4, 5, 6, 7, 8	U	F, C, P	L
3	Master fundamental concepts of probability theory, including events, conditional probability, and random variables (both discrete and continuous), allowing them to analyse uncertain events and make informed decisions.	PO: 1, 2, 3, 4, 5, 6, 7, 8 / PSO: 1, 2, 3, 4, 5, 6, 7, 8	Ар	F, C, M	L
4	Apply the knowledge of common probability distributions such as the binomial, Poisson, and normal distributions to model and analyse real-world phenomena accurately.	PO: 1, 2, 3, 4, 5, 6, 7, 8 / PSO: 1, 2, 3, 4, 5, 6, 7, 8	R	C, M	L
5	Analyse relationships between variables through correlation and regression analysis, enabling them to quantify and interpret associations within data sets effectively.	PO: 1, 2, 3, 4, 5, 6, 7, 8 / PSO: 1, 2, 3, 4, 5, 6, 7, 8	С	C, P	L
6	Develop the ability to perform hypothesis testing and conduct ANOVA tests (both	PO: 1, 2, 3, 4, 5, 6, 7, 8	C	C, P	L

one-way and two-way), empowering them to draw meaningful conclusions from data			
and make statistical inferences about populations.	8		

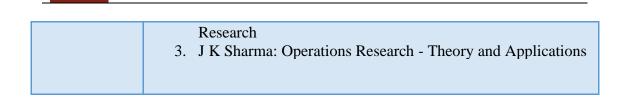
	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS 0 7	PS 0 8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1
CO 2	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1
CO 3	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1
CO 4	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1
CO 5	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1
CO 6	3	3	2	1	1	1	2	2	1	3	1	1	1	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:


- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			\checkmark
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			\checkmark	

Discipline	MATHEMATIC	S									
Course Code	MIUK3DSCMAT203.1										
Course Title	Basic Operations Research										
Type of	DSC										
Course											
Semester	III	III									
Academic	200 - 299										
Level											
Course	Credit	Lecture	Tutorial	Practical	Total						
Details		per week per week Per week Hours/Week									
	4	3 hours	-	2 hours	5						
Pre-requisites	1. Linear Equation 2. Inequalities	ns									
Course	This course at the	undergradu	ate level typ	ically covers	mathematical						
Summary	modelling, optim	-	• -	•							
	to solve complex				-						
	covers formulation		-								
	problems and pro	ject manage	ment techni	ques like CP	M and PERT.						
	This course equip	s students w	vith quantita	tive problem	-solving skills						
	and analytical to										
	informed decisi	,	improving	-	in various						
	organizational se										
	operations researc	ch, managem	ent consulti	ng, and relate	ed fields.						
Prescribed	Ravindran - Philip	os - Solberg:	Operations	Research- Pr	inciples and						
Text	Practice	-	-		-						
Reference	1. Hamdy A	Taha: Opera	ations Resea	rch: An Intro	oduction (10th						
Textbooks	Edition) 2. Kanti Sw	varup, P. H	K. Gupta, I	Man Mohar	: Operations						

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Linear Programming	15
	1	Formulation of Linear Programming models	5
	2	Graphical solution of Linear Programs in two variables	5
	3	Linear Programs in standard form - basic variable - basic solution- basic feasible solution-feasible solution	5
		[The topics to be discussed in this module can be found in Chapter 2 of the prescribed text]	
II		Simplex method	15
	4	Solution of a Linear Programming problem using simplex method (Since Big- M method is not included in the syllabus, avoid questions in simplex method with constraints of \geq or = type).	15
		[The topics to be discussed in this module can be found in Chapter 2 of the prescribed text]	
III		Transportation Problems	15
	5	Linear programming formulation - Initial basic feasible solution (Vogel's approximation method/ North-west corner rule)	6
	6	-degeneracy in basic feasible solution - Modified distribution method – optimality test.	4
		Standard assignment problems - Hungarian method for solving an assignment problem.	5
		[The topics to be discussed in this module can be found in Chapter 3 of the prescribed text]	
IV		Project Management	15
	7	Activity -dummy activity - event - project network, CPM (solution by network analysis only),	9
	8	PERT.	6

[The topics to be discussed in this module can be found in Chapter 3 Section 7 of the prescribed text]	
Use CAS wherever possible	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse d
CO-1	Formulate LPP and Solve LPP using Graphical method	Ap, An, E, C	PSO 1,2,3
CO-2	Determine the solution of LPP using Simplex method	Ap, An, E	PSO 1,2,3
CO-3	Use Vogel's Approximation method and North West corner method to solve the transportation problem and Hungarian method to solve assignment problems	An, Ap,E	PSO 1,2,3
CO-4	Apply the techniques of CPM and PERT to solve the real-life problems	Ap, An, E, C	PSO 1,2,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L) / Tutorial (T)	Practical (P)
1	Formulate LPP and Solve LPP using Graphical method	PO 1,2/PSO 1,2,3	Ap, An, E, C	F, C	L	
2	Determine the solution of LPP using Simplex method	PO 1,2/PSO 1,2,3	Ap, An, E	F, C	L	
3	Use Vogel's Approximation method and North West corner method to solve the transportation problem and Hungarian method to solve assignment problems	PO 1,2/PSO 1,2,3	An, Ap,E	F, C	L	
4	Apply the techniques of CPM and PERT to solve the real-life problems	PO 1,2/PSO 1,2,3,4,5	Ap, An, E, C	F, C	L	

	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7							
	1	2	3	4	5	6	7	8							
CO 1	3	3	3	2	2	1	1	1	3	3	-	2	2	1	2
CO 2	3	3	3	2	2	1	1	1	3	3	1	-	2	1	1
CO 3	3	3	3	3	1	1	1	2	3	3	-	-	1	2	2
CO 4	3	3	3	3	3	2	1	1	3	3	1	1	2	2	3

Mapping of COs with PSOs and POs :

Correlation Levels:

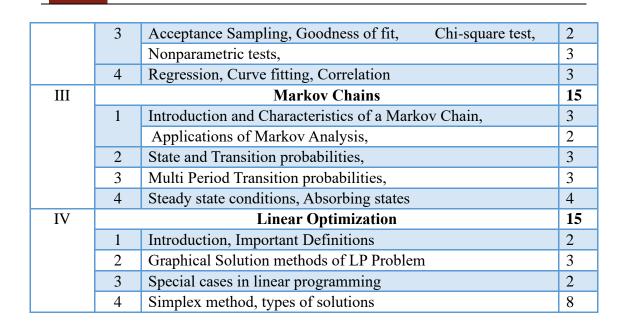
Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			✓
CO 2	1			✓
CO 3		✓		✓
CO 4		✓		\checkmark



Discipline	MATHEMATIC	CS			
Course Code	MIUK3DSCMA	Г204.1			
Course Title	Statistics and Oj	ptimization			
Type of	DSC				
Course					
Semester	III				
Academic	200 - 299				
Level					
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	4 hours	-	-	4
Pre-requisites	1. Basic Statistics	5			
	2. Linear Equatio	ns			
Course	This course prov	vides a com	prehensive	introduction	to probability
Summary	and statistics, fo	0		-	-
	applications. Stud				
		• •	• •		permutations,
	combinations, an				•
	probability distri				
	distributions. Stu point estimation				
	testing, gaining	-			• -
	techniques. Adv	-		e	•
	fitting, correlation introduces the fu	-			•
	transition probab				-

	steady-state conditions, along with applications in various fields. The course concludes with an introduction to linear programming, covering important definitions, graphical solution methods, special cases, and the simplex method for solving optimization problems. Through theoretical learning and practical exercises, students will develop a strong foundation in probability, statistics, and optimization techniques essential for data analysis and decision- making in diverse domains.
Text	 Advanced Engineering Mathematics, Erwin Kreyszig, Wiley International Edition, 9th edition. Operations Research Theory and applications, J K Sharma, MacMillan, 3rd edition. Chapter 24: Sections 24.1 – 24.9 of Text 1 Chapter 25: Sections 25.1 – 25.9 of Text 1 Chapter 18: Sections 18.1 – 18.7 of Text 2 Chapter 3: Sections 3.1 – 3.4 Chapter 4: Sections 4.1 – 4.6 of Text 2.
References	 Edwin K. P. Chong, Stanislaw H. Zak, An Introduction to Optimization, Fourth Edition, John Wiley & Sons. Sheldon M. Rooss, Stochastic Processes, 2nd Edition, John Wiley and Sons, 1996. H A Taha, Operations Research – An Introduction, Prentice Hall, 7th edition, 2006.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Data Analysis and Probability	15
	1	Data Representation, Average, spread	2
	2	Experiments, events, outcomes, permutations and combinations	2
	3	Random Variables, probability distributions, Mean and Variance of a distribution	3
	4	Binomial, Poisson, Normal distributions	8
II		Mathematical Statistics	15
	1	Random Sampling,	1
		Point Estimation of parameters,	2
	2	Confidence Interval,	2
		Testing of Hypothesis, Decisions, Quality control,	2

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Demonstrate proficiency in analysing data, including representing data, calculating measures of central tendency and spread, and understanding various probability distributions such as binomial, Poisson, and normal distributions.	R, U, Ap	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	Gain a deep understanding of probability theory and random variables, enabling them to analyse experiments, events, outcomes, and perform calculations of mean and variance for distributions.	R, U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-3	Develop skills in inferential statistics, including point estimation of parameters, constructing confidence intervals, and hypothesis testing, facilitating informed decision-making and quality control in various scenarios.	E, R, U, Ap	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	Acquire techniques for data analysis, including regression analysis, curve fitting, and correlation, allowing them to model relationships between variables and make predictions based on observed data.	E, Ap, An, C	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	Demonstrate competency in analysing Markov chains, including understanding state and transition probabilities, multi-period transition probabilities, steady-state conditions, and applications of Markov analysis in various fields.	U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	Gain proficiency in linear programming, including	U, Ap, An,	PSO: 1, 2,

understanding important definitions, graphical	3, 4, 5, 6, 7
solution methods, and the simplex method for	
solving optimization problems, providing them	
with tools for solving real-world optimization	
problems efficiently.	

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO	СО	_	e	, e	
No.		PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
1	Demonstrate proficiency in analysing data, including representing data, calculating measures of central tendency and spread, and understanding various probability distributions such as binomial, Poisson, and normal distributions.	PO: 1, 2, 4, 5, 6 PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap	F, C, P	L
2	Gain a deep understanding of probability theory and random variables, enabling them to analyse experiments, events, outcomes, and perform calculations of mean and variance for distributions.	PO: 1, 2, 4, 5 / PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap, An	F, C	L
3	Develop skills in inferential statistics, including point estimation of parameters, constructing confidence intervals, and hypothesis testing, facilitating informed decision-making and quality control in various scenarios.	PO: 1, 2, 4, 5 / PSO: 1, 2, 3, 4, 5, 6, 7	E, R, U, Ap	С, Р, М	L
4	Acquire techniques for data analysis, including regression analysis, curve fitting, and correlation, allowing them to model relationships between variables and make predictions based on observed data.	PO: 1, 2, 4, 5 / PSO: 1, 2, 3, 4, 5, 6, 7	E, Ap, An, C	P, M	L
5	Demonstrate competency in analysing Markov chains, including understanding state and transition probabilities, multi- period transition probabilities, steady-state conditions, and applications of Markov analysis in various fields.	PO: 1, 2, 4, 5 / PSO: 1, 2, 3, 4, 5, 6, 7	U, Ap, An	F, C, P	L
6	Gain proficiency in linear programming, including understanding important definitions, graphical solution methods, and the simplex method for solving optimization problems, providing them with tools for solving real-world	PO: 1, 2, 4, 5 / PSO: 1, 2, 3, 4, 5, 6, 7	U, Ap, An, E	C, P	L

optimization problems efficiently.

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS 07	PS 0 8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	I	1	3	I	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	-	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1		-
CO 6	3	3	2	1	1	1	2	-	1	3	-	1	1		-

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			\checkmark
CO 3	✓			✓
CO 4		1		✓
CO 5		✓		✓
CO 6		~		\checkmark

Discipline	MATHEMATICS						
Course Code	MIUK3DSEMAT205.1						
Course Title	Elementary Number Theory and Cryptography						
Type of Course	DSE						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week		
Details		рег жеек	per week	per week	TIOUIS/ WEEK		
	4	4 hours	-	-	4		
Pre-requisites							
References	1. David M Burto Education (India)		•	•			
	2. Thomas Koshy (2nd ed), Academ		•	heory with A	pplications		
	3. Gareth A Jones Springer, 1998. In			mentary Nun	iber Theory,		
	4. Joseph H Silve (4th ed), Pearson		•		mber Theory		
	5. T. M. Apostol, New York, 1998.	Introductio	n to Analytic	c Number Th	eory, Springer		
	6. Kenneth H. Ro Education, 2015.	6. Kenneth H. Rosen, Elementary Number Theory (6th ed), Pearson Education, 2015.					
	7. K. Ireland and Number Theory,	,		ntroduction t	o Modern		
	8. J. H. Silvermar	n, Jill Pipher	r, Jeffrey Ho	ffstein, An Ir	troduction to		

	Mathematical Cryptography, Springer, 2008.
Course Summary	This course introduces basic properties of numbers, congruences, and three related milestone theorems. Various applications of number theory, with emphasis on coding, cryptography, and primality testing are also elaborated.

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		Division Theorem, GCD, and primes	15			
	1	The division algorithm, Base-b representations and operations in non-decimal basis, Prime and Composite numbers, Infinitude of primes, distribution of primes, the greatest common divisor, methods to find the gcd, Euclidean algorithm, fundamental theorem of arithmetic and canonical decomposition method, linear Diophantine equations and their solutions.				
II		Congruences and applications				
	2	Congruences, Linear congruences, Applications of congruences-Divisibility tests, Hashing functions, pseudo random numbers, Modular designs, Check digits, p-queens puzzle, round robin tournaments, perpetual calendar- Systems of linear congruences, Chine Remainder theorem for pairwise relatively prime moduli and its extension to arbitrary moduli.				
III		Three classical milestone theorems and applications	15			
	3	Fermat's Theorem, Euler's theorem, Wilsons Theorem, Their Applications, Pseudo Primes, Arithmetic functions- Multiplicative functions, Euler's phi function, tau and sigma functions, mobius function.				
IV		Introduction to Cryptography	15			
	4	Quadratic residues and reciprocity, the idea of public key cryptography, From Caesar cypher to Public Key cryptography, Affine cyphers, Hill cyphers, Exponentiation cyphers, RSA cryptosystem, The Knapsack cryptosystem. Cryptographic protocols, Key Exchange, Digital Signatures.				

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the division algorithm and apply it to find gcd of numbers and to solve linear Diophantine equations,	U, Ap	1,2,3,4,5
CO-2	Acquire expertise in the application of congruences and solution of system of congruences	U, Ap, C	1,2,3,4,5
CO-3	Apply Fermat's little Theorem, Euler's theorem, and Wilson's Theorem to solve various number theoretic problems, and understand some basic Arithmetic functions	U, Ap	1,2,3,4,5
CO-4	Apply number theoretic concepts to solve cryptographic problems and acquire expertise in innovative coding techniques	U, Ap, C	1,2,3,4,5,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the division algorithm and apply it to find gcd of numbers and to solve linear Diophantine equations,	PO 1,2,5,6	F, C, P	C, P	L/T	
2	Acquire expertise in the application of congruences and solution of system of congruences	PO 1,2,5,6	F, C, P	C, P	L/T	
3	ApplyFermat'slittleTheorem,Euler'stheorem,andWilson'sTheoremto solvevariousnumbertheoreticproblems,andunderstandsomebasicArithmeticfunctions	PO 1,2,5,6	F, C, P	C, P	L/T	
4	Applynumbertheoreticconceptstosolvecryptographic	PO 1,2,5,6	F, C, P	С, Р	L/T	

problems and			
acquire expertise in			
innovative coding			
techniques			

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	2	2				3	3			2	2	
CO 2	2	3	3	2	2				3	3			2	2	
CO 3	2	3	3	2	2				3	3			2	2	
CO 4	2	3	3	2	2	3			3	3			2	3	

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓	1	1	✓
CO 2	✓	1	1	✓
CO 3	✓	1	1	✓
CO 4	✓	1	1	\checkmark

SEMSETER IV

Discipline	MATHEMATIC	ĊS							
Course Code	MIUK4DSCMA	MIUK4DSCMAT250.1							
Course Title	Linear Algebra								
Type of Course	DSC								
Semester	IV								
Academic Level	200 - 299								
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week				
	4	4 hours	-	-	4				
Pre-requisites	1. Elementary Ma	atrix Theory							
Course Summary	The course cover and its application matrices, includi Students learn ele manipulate matrice and the computate delves into the significance in homogeneous and with concepts of forming vector sp Linear models highlighting the topics include n properties of 1	ons. It begi ing partitio ementary ro ces, leading tion of inves characteriza solving s d non-homo linear indep paces. in econon practical a ull spaces,	ns with the ned matrice w operation to the unde rses using th ation of inv systems of geneous. Ve pendence, de nics and e pplications column spa	study of va es and their s and how the rstanding of nese operation rertible matri- linear eq ectors are intre- pendence, ar engineering of linear al	rious types of r submatrices. hey are used to echelon forms ins. The course ices and their uations, both roduced, along ind their role in are explored, gebra. Further e fundamental				

	representations. The course emphasizes the importance of bases,								
	dimension, and rank in understanding the structure of vector spaces								
	and linear transformations. Eigenvalues and eigenvectors are								
	introduced, leading to discussions on diagonalization and the								
	Cayley-Hamilton theorem. Applications in computer graphics								
	lemonstrate how these concepts are used in practical scenarios.								
	Orthogonality and inner products are studied, along with techniques								
	like the Gram-Schmidt process for orthogonalization. Special								
	attention is given to diagonalization of symmetric matrices and their								
	significance in various fields. Finally, quadratic forms are								
	introduced, completing the course's coverage of linear algebra and								
	its diverse applications.								
Text	David C. Lay, <i>Linear Algebra and its Applications</i> , Fourth Edition,								
	Addison-Wesley.								
	Chapter 1: Sections $1.1 - 1.10$, Chapter 2: Sections $2.1 - 2.4, 2.8, 2.0$								
	Chapter 2: Sections 2.1 – 2.4, 2.8, 2.9 Chapter 4: Sections 4.1 – 4.7								
	Chapter 4: Sections $4.1 - 4.7$ Chapter 5: Sections $5.1 - 5.4$								
	Chapter 6: Sections $6.1 - 6.4$								
	Chapter 7: Sections $7.1 - 7.2$								
References	1. Gilbert Strang, <i>Linear Algebra and its Applications</i> , Fourth								
	Edition.								
	2. Thomas Banchoff, John Wermer, Linear Algebra Through								
	Geometry, Second Edition, Springer.								
	3. Sterling K. Berberian, Linear Algebra, Oxford University								
	Press, 1992.								

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		Matrices	15					
	1	Types of matrices, submatrices	2					
		Elementary row operations						
		Echelon form	3					
	2	Inverse of a matrix using elementary operations	3					
		Characterizations of invertible matrices	2					

		Partitioned matrices	3				
II		Linear systems Equations and their consistency	15				
	1	Systems of Linear equations	1				
		Non-homogeneous systems	3				
		Homogeneous systems	2				
	2	Vectors	2				
		Linear independence and dependence of vectors	4				
	3 Linear Models in Economics and Engineering						
III		Vector Spaces	15				
	1	Vector Spaces	1				
		Null Spaces	1				
		Column spaces	1				
	2	Linear Transformations	1				
		Linearly independent sets	1				
		Bases	1				
		Dimension	1				
		Rank	1				
	3	Matrix of linear transformations	1				
		Change of basis	1				
	4	Characteristic equations	1				
		Eigen values and eigen vectors	2				
		Cayley Hamilton Theorem	1				
		Application to computer graphics	1				
IV		Diagonalization and quadratic forms	15				

1	Diagonalization	2
	Eigen vectors and linear transformations	1
	Applications	1
2	Inner products	1
	Orthogonal sets	1
	Gram – Schmidt Process	2
3	Diagonalization of symmetric matrices	3
	Quadratic forms	4

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	perform various operations on matrices, including elementary row operations, determining submatrices, identifying echelon forms, and computing inverses using elementary operations	R, Ap, E, C	1, 2, 3,4 5, 6, 7
CO-2	gain an understanding of the properties and characteristics of matrices, including invertible matrices, partitioned matrices, and the relationship between matrices and systems of linear equations	Ap, E	1, 2, 3,4 5, 6, 7
CO-3	develop competence in vector spaces, understanding concepts such as linear independence, dependence, bases, dimension, rank, null spaces, and column spaces. They will also gain proficiency in linear transformations, including matrix representations of linear transformations and change of basis	Ap, An, E	1, 2, 3,4 5, 6, 7
CO-4	apply the concepts learned in the course to computer graphics, understanding how matrices and linear transformations are used to represent geometric transformations, such as translation, rotation, scaling, and shearing	Ap, An, E, C	1, 2, 3,4 5, 6, 7
CO-5	master the concepts of eigenvalues and eigenvectors, including their calculation, interpretation, and applications in diagonalization, linear transformations, and the Cayley-Hamilton theorem	Ap, An, C, E	1, 2, 3,4 5, 6, 7
CO-6	gain proficiency in inner products, orthogonal sets, and the Gram-Schmidt process. They will also learn about diagonalization of symmetric	Ap, AN, E, C	1, 2, 3,4 5, 6, 7

matrices and applications of orthogonalization	
techniques in solving systems of equations and	
quadratic forms.	

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO	СО			1)	\geq
No.		OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
1	perform various operations on matrices, including elementary row operations, determining submatrices, identifying echelon forms, and computing inverses using elementary operations	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	R, Ap, E, C	F, C, P	L
2	gain an understanding of the properties and characteristics of matrices, including invertible matrices, partitioned matrices, and the relationship between matrices and systems of linear equations	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	Ap, E	F, C, P	L
3	develop competence in vector spaces, understanding concepts such as linear independence, dependence, bases, dimension, rank, null spaces, and column spaces. They will also gain proficiency in linear transformations, including matrix representations of linear transformations and change of basis	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	Ap, An, E	F, P	L
4	apply the concepts learned in the course to computer graphics, understanding how matrices and linear transformations are used to represent geometric transformations, such as translation, rotation, scaling, and shearing	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	Ap, An, E, C	F, P	L
5	master the concepts of eigenvalues and eigenvectors, including their calculation, interpretation, and applications in diagonalization, linear transformations, and the Cayley-Hamilton theorem	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	Ap, An, C, E	F, C, P	L
6	gain proficiency in inner products, orthogonal sets, and the Gram-Schmidt process. They will also learn about diagonalization of symmetric matrices and applications of orthogonalization	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,4 5, 6, 7	Ap, AN, E, C	F, C, P	L

techniques in solving systems of equations and quadratic forms.

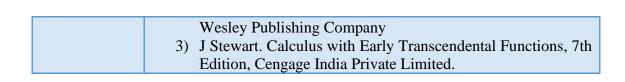
Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS 0 7	PS0 8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 6	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-

Correlation Levels:

Leve	Correlation
1	
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:


- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

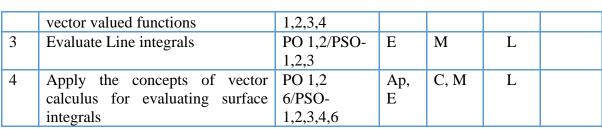
	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	1			\checkmark
CO 3	✓			\checkmark
CO 4		1		\checkmark
CO 5		1		\checkmark
CO 6			✓	

Discipline	MATHEMATIC	'S				
Course Code	MIUK4DSCMAT	251.1				
Course Title	Vector Calculus					
Type of	DSC					
Course						
Semester	IV					
Academic	200 -299					
Level						
Course	Credit	Lecture	Tutorial	Practical	Total	
Details		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	1. Knowledge abo	out Vectors				
	2. Differentiating	and integrat	ing multivar	iable function	ns	
Course	This course is inte	ended to get	the knowled	ge of vectors	,its various	
Summary	operations, Sketch its various applica	-	ector function	ons , Vector c	alculus and	
	The targeted audience of this course is the undergraduate mathematics students.					
Prescribed Text	H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley& Sons					
	University Education	ng Proof to v of East Ai	Year 1 ma nglia, Centre	thematics ur e for Applied	A brief guide idergraduates, d Research in ion, Addison-	

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Vector Calculus	15
	1	Vectors, dot products, Projections, Cross product, parametric equations of lines, Planes in 3-Space	15
		11.2,11.3,11.4,11.5,11.6	
II		Types of Vectors and its Applications	15
	2	 Introduction to vector valued functions using parametric curves in the three-dimensional space, limits, continuity and derivatives of vector valued functions, geometric interpretation of the derivative, basic rules of differentiation of such functions, derivatives of vector products. Integrating vector functions, length of an arc of a parametric curve, change of parameter, arc length parametrizations Various types of vectors that can be associated to a curve such as unit vectors, tangent vectors, binormal vectors 12.1,12.2,12.3, 12.4 	9
	3	Curvature, Various formulae for curvature, the geometrical interpretation of curvature 12.5,12.6	4
III		Vector Fields	15
	4	Directional derivative ,gradient ,Vector fields and their graphical representation, various type of vector fields (inverse-square, conservative), potential functions	5
	5	Divergence, curl, the operator: Laplacian. Integrating a function along a curve (line integrals), integrating a vector field along a curve, defining work done as a line integral, line integrals along piecewise-smooth curves, integration of vector fields and independence of path, fundamental theorem of line	10

		integrals, line integrals along closed paths, test for conservative vector fields 15.1,15.2,15.3	
IV		Application of Vector Calculus	15
	6	Green's theorem and applications. Defining and evaluating surface integrals, their applications, orientation of surfaces, evaluating flux integrals, The divergence theorem, Gauss' Law, Stoke's theorem, applications of these theorems. 15.4,15.5,15.6,15.7,15.8	15


No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the concept of vectors and demonstrate	U,Ap	PSO-
	various vectors and sketch the planes in 3 D space		1,2,3,6
CO-2	Differentiate and integrate various vector valued	An	PSO-
	functions		1,2,3,4
CO-3	Evaluate Line integrals	Е	PSO-1,2,3
CO-4	Apply the concepts of vector calculus for evaluating	Ap, E	PSO-
	surface integrals		1,2,3,4,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

C O No	СО	OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the concept of vectors and demonstrate various vectors and sketch the planes in 3 D space		U,A p	F, C, P,M	L	
2	Differentiate and integrate various	PO 1,2 /PSO-	An	C,M	L	

	PS O1	PS O2	PS 03	PS O4	PS 05	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	3	3	-	-	3	1	-	3	3	-	2	-	1	-
CO 2	3	3	3	3	-	-	1	1	3	3	-	-	2	-	1
CO 3	3	3	3	2	1	-	-	-	3	3	-	-	-	-	-
CO 4	3	3	3	3	-	3	2	1	3	3	-	-	-	3	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	1	✓		✓
CO 3	1	✓		✓
CO 4		✓		\checkmark

Discipline	MATHEMATIC	CS						
Course Code	MIUK4DSEMA7	MIUK4DSEMAT252.1						
Course Title	Theory of Equat	ions						
Type of Course	DSE	DSE						
Semester	IV							
Academic Level	200 - 299							
Course Details	Practical per week	Total Hours/Week						
	4	4 hours	-	-	4			
Pre-requisites	1: Basic High Sch	1001 Algebra	a					
	2: Differentiation	of elementa	ary functions	5				
Course Summary	numbers, coveri conjugates, and in of complex num alongside De M complex number including multipl imaginary roots, along with spec Techniques such root separation applications and	2: Differentiation of elementary functions This course offers a comprehensive exploration of complex numbers, covering basic algebraic operations, absolute value, conjugates, and inequalities. Students learn to compute square roots of complex numbers and explore their geometric representation alongside De Moivre's Theorem. Topics extend to nth roots of complex numbers, roots of unity, and polynomial operations including multiplication and synthetic division. Algebraic equations, imaginary roots, and their relation to coefficients are discussed, along with special cases like multiple roots and upper limits. Techniques such as Rolle's theorem and Sturm's functions aid in root separation and analysis of real roots, while practical applications and problem-solving strategies are emphasized throughout. Symmetric functions are defined, with the fundamental						

	Lagrange's solutions for cubic and biquadratic equations are presented, along with the Gaussian Principle. Throughout the course, practical applications and problem-solving techniques are emphasized to deepen understanding and foster mathematical proficiency.
Text	J. V. Uspensky, <i>Theory of Equations</i> , McGraw Hill Chapters I, II, III, IV, V, VI, VII, VIII, XI
References	 Leonard Eugene Dickson, <i>Elementary Theory of Equations</i>, First Edition, John Wiley & Sons. Turnbull H. W., <i>Theory of Equations</i>, Oliver and Boyd, 1947.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Complex Numbers and Polynomials in one variable	15
	1	Introduction to complex numbers and basic algebraic operations	1
		Absolute value, Conjugates and related inequalities	1
		Square root of a complex number	1
		Geometric representation of complex numbers	1
	2	De Moivre's Theorem	1
		n^{th} root of a complex number	2
		Roots of unity	1
	3	Multiplication and Synthetic division of polynomials	1
		Remainder Theorem, Horner's Process	1
		Taylor's Theorem	1
		Highest Common divisor of two polynomials	1
	4	Introduction to Algebraic Equations	1
		Identity Theorem	1

		Fundamental Theorem of Algebra	1			
II	More on Algebraic Equations					
	1	Imaginary roots of equations with real coefficients	1			
		Relation between roots and coefficients	3			
		Case of multiple roots	1			
	2	Upper limit of positive roots	2			
		Limit for moduli of roots	1			
		Rational roots	2			
	3	Cubic Equation: Cardan's Method	2			
		Irreducibility case	1			
		Biquadratic equations	2			
III	Separation of roots and Sturm's theorem					
	1	Objective of Separation of roots	1			
		Basic Theorems and lemmas without proof	2			
	2	Applications of Rolle's theorem	2			
		Descarte's rule of signs	2			
	3	Equations with real roots	1			
		A complete Method of Separating roots	2			
	4	Introduction to Sturm's functions	2			
		The Sturm's theorem and problems	3			
IV		Approximate roots and Symmetric functions	15			
	1	Introduction	1			
		The Horner's method	2			
	2	Method of contraction	1			

	Estimation of error	1
	Method of iteration	2
3	Definition of symmetric functions – Basic problems	2
	Fundamental theorem of symmetric functions	1
	Practical method - Problems	2
4	Lagrange's solution of cubic equations	1
	Lagrange's solution of biquadratic equations	1
	The Gaussian Principle	1

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	develop a solid understanding of complex numbers, including their properties, arithmetic operations, and geometric representation, enabling them to manipulate them confidently in mathematical contexts.	R, U, Ap, E	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	Students will acquire proficiency in algebraic techniques related to complex numbers, including computing square roots, finding nth roots, and performing polynomial operations such as multiplication and synthetic division	R, U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-3	Upon completion of the course, students will be equipped with the tools to analyse algebraic equations, including identifying imaginary roots, understanding their relation to coefficients, and dealing with special cases like multiple roots and upper limits.	E, R, U	PSO: 1, 2, 3, 4, 5, 6, 7
CO-4	Students will gain experience in applying theoretical concepts such as Rolle's theorem, Sturm's functions, and symmetric functions to analyse and solve mathematical problems related to complex numbers and algebraic equations.	E, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	Upon completion of the course, students will have a thorough understanding of symmetric functions and their significance in mathematics, enabling them to apply them effectively in various problem-solving contexts.	U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	By studying Lagrange's solutions for cubic and biquadratic equations, as well as the Gaussian Principle, students will deepen their understanding of advanced mathematical techniques and their applications in solving complex problems.	Ap, An, C	PSO: 1, 2, 3, 4, 5, 6, 7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowled ge Category	Lecture (L)/Tut orial (T)
1	develop a solid understanding of complex numbers, including their properties, arithmetic operations, and geometric representation, enabling them to manipulate them confidently in mathematical contexts.	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap, E	F, C, P	L
2	Students will acquire proficiency in algebraic techniques related to complex numbers, including computing square roots, finding nth roots, and performing polynomial operations such as multiplication and synthetic division	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap, An	С, Р	L
3	Upon completion of the course, students will be equipped with the tools to analyze algebraic equations, including identifying imaginary roots, understanding their relation to coefficients, and dealing with special cases like multiple roots and upper limits.	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	E, R, U	С, М	L
4	Students will gain experience in applying theoretical concepts such as Rolle's theorem, Sturm's functions, and symmetric functions to analyze and solve mathematical problems related to complex numbers and algebraic equations.	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	E, Ap, An	F, C, M	L
5	Upon completion of the course, students will have a thorough understanding of symmetric functions and their significance in mathematics, enabling them to apply them effectively in various problem-solving contexts.	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	U, Ap, An	F, M	L
6	By studying Lagrange's solutions for cubic and biquadratic equations, as well as the Gaussian Principle, students will deepen their understanding of advanced mathematical	PO: 1, 2, 4, 5, 6 /PSO: 1, 2, 3, 4, 5, 6, 7	Ap, An, C	F, C, P	L

t	techniques and their applications		
i	in solving complex problems.		

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 4	3	3	2	1	1	1	2	I	1	3	I	1	1	1	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 6	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	1			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			1	

Discipline	MATHEMATIC	Ś							
Course Code	MIUK4SECMAT253.1								
Course Title	Python Program	Python Programming and LaTeX							
Type of Course	SEC	SEC							
Semester	IV								
Academic Level	200 - 299	200 - 299							
Course	Credit	Lecture	Tutorial	Practical	Total				
Details	per week		per week per week		Hours/Week				
	3	3 hours	-	-	3				
Pre-requisites	 Basic knowledge Mathematical log 								
Text Book	Manning. 2. Indian TeX Use	 Vernon L. Ceder, <i>The Quick Python Book</i>, Second Edition, Manning. Indian TeX Users Group, <i>LaTeX Tutorials - A Primer</i>, available online at <u>https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf</u> 							
Course summary	In this course we in language programm tool LaTeX. We dis mathematics as a to LaTeX program is	ning language scuss the basi ool to solve m	e Python and a cs of python athematical p	a mathematica through examp	l typesetting ples from				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Python Programming	20

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	1 We begin the discussion by introducing the basics of python. The feature of using python as a calculator, the supporting data types, variables, assignments, expressions, operations, indentation and comments etc. are to be discussed in detail. Then introduces list, tuple, set etc and their features and attributes. The strings, string operations, formatting of strings and related topics are to be discussed in detail. Then we introduce dictionaries too. The control flow elements including if, if- else, if-elif-else and for, while loops etc are discussed with more examples. We introduce the functions and related topics too.	ons
II	9.1 to 9.5 need to be discussed. Typesetting using LaTeX	25
	2 The main topics in this module are following:	
	Typesetting a simple article and compiling it. How spaces are treated in the document.	
	Document layout: various options to be included in the documentclass command, page styles, splitting files into smaller files, breaking line and page, using boxes (like, mbox) to keep text unbroken across lines, dividing document in to parts like frontmatter, mainmatter, backmatter, chapters, sections, etc, cross referencing with and without page number, adding footnotes. Emphasizing words with \emph,\texttt, \textsl, \textit, \underline etc. Basic environments like enumerate, itemize, description, flushleft, flusuright, center, quote, quotation.	
	 Controlling enumeration via the enumerate package. Tables: preparing a table and floating it, the longtable environment. Typesetting mathematics: basic symbols, equations, operators, the equation environment and reference to it, the displaymath environment, exponents, arrows, basic functions, limits, fractions, spacing in the mathematics environments, matrices, aligning various objects, multi-equation environments, suppressing numbering for one or more equations, handling long equations, phantoms, using normal text in math mode, controlling font size, typesetting theorems, definitions, lemmas, etc, making text bold in math mode, inserting symbols and environments (array, pmatrix, etc) using the support of GUIs. Figures: Including JPG, PNG graphics with graphicx package, 	
	Figures: Including JPG, PNG graphics with graphicx package, controlling width, height etc., floating figures, adding captions, the wrapfig package. Adding references/bibliography and citing them,	

	using the package hyperref to add and control hypertext links, creating presentations with pdfscreen, creating new commands.	
	Fonts: changing font size, various fonts, math fonts.	
	Spacing: changing line spacing, controlling horizontal, vertical spacing, controlling the margins using the geometry package, fullpage package.	
	Preparing a dummy project with titlepage, acknowledgement, certificates, table of contents (using \tableofcontents), list of tables, table of figures, chapters, sections, bibliography (using the thebibliography environment). This dummy project should contain atleast one example from each of the topic in the syllabus, and should be submitted for internal evaluation before the end semester practical examination.	
The to	pics are to be discussed based on Text2.	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Typeset a report containing Mathematics using LaTeX.	U, Ap	PSO- 1,2,3,6
CO-2	Acquire basic programming skill.	U, Ap	PSO- 1,3,6,7
CO-3	Understand basics of python programming and use to solve related problems.	U, Ap, C	PSO- 1,2,5,6,7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Typeset a report containing Mathematics using LaTeX.	PO-1,2,6 / PSO-1,2,3,6	U, Ap	Р, М	L	Р
2	Acquire basic programming skill.	PO-1,2,5 / PSO-1,3,6,7	U, Ap	F, C, P	L	Р
3	Understand basics of python programming and use to solve related problems.	PO-2,5,6/ PSO- 1,2,5,6,7	U, Ap, C	F, C, P,M	L	Р

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS O6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	-	2	3	2	1	3	3	2	-	1	3	-
CO 2	3	2	3	-	2	3	3	1	3	3	2	1	3	2	-
CO 3	3	3	2	1	3	3	3	1	2	3	2	-	3	3	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓	1		\checkmark
CO 3	1	1		\checkmark

$\mathbf{SEMSETER} - \mathbf{V}$

MATHEMATICS				
MIUK5DSCMAT300).1			
Real Analysis I				
DSC				
V				
300 - 399				
Credit	Lecture	Tutorial	Practical	Total
	per week	per week	per week	Hours/Week
4	4 hours	-	-	4
1. Real numbers, Set	theory			
2. Logic				
This course provides	a compreher	nsive overvie	w of real num	bers, covering
fundamental concept	ts such as	upper and	lower bound	ls, supremum,
				•
		· ·		1 0
-	-			
	-			······································
In the realm of seque	ences, the co	ourse addres	ses the limit	of a sequence,
•••	-	-		
		•		
e				Theorem are
-	_		-	
	MIUK5DSCMAT300 Real Analysis I DSC V 300 - 399 Credit 4 1. Real numbers, Set 2. Logic This course provides undamental concept nfimum, maximum, ational and irrational number line. The Ne ignificance in under examines the existent nterval (0,1), elucidat n the realm of sequences properties of sequent convergence Theorem Convergence Theorem	MIUK5DSCMAT300.1 Real Analysis I DSC V 300 - 399 Credit Lecture per week 4 4 hours 1. Real numbers, Set theory 2. Logic This course provides a compreher undamental concepts such as nfimum, maximum, and minimu ational and irrational numbers, ex- number line. The Nested Interva significance in understanding re- examines the existence of square nterval (0,1), elucidating Cantor's n the realm of sequences, the con- tiverging sequences, algebraic properties of sequences and lin Convergence Theorem and the ntroduced, alongside techniques	MIUK5DSCMAT300.1 Real Analysis I DSC V 300 - 399 Credit Lecture Tutorial per week 4 4 hours - 1. Real numbers, Set theory 2. Logic This course provides a comprehensive overvie undamental concepts such as upper and nfimum, maximum, and minimum of a set. I ational and irrational numbers, exploring thei number line. The Nested Interval Property is significance in understanding real number examines the existence of square roots and nterval (0,1), elucidating Cantor's theorem. n the realm of sequences, the course address liverging sequences, algebraic operations properties of sequences and limits. Key th Convergence Theorem and the Bolzano- ntroduced, alongside techniques such as Can	MIUK5DSCMAT300.1 Real Analysis I DSC V 300 - 399 Credit Lecture Tutorial Practical per week per week per week 4 4 hours 1. Real numbers, Set theory 2. Logic This course provides a comprehensive overview of real num undamental concepts such as upper and lower bound nfimum, maximum, and minimum of a set. It delves into ational and irrational numbers, exploring their distribution number line. The Nested Interval Property is discussed, e significance in understanding real number intervals. The examines the existence of square roots and the uncoun

	criterion for series convergence is discussed, as well as rearrangement of absolutely convergent series. Transitioning to set theory, the course covers open and closed sets in R, complements, and the concept of compactness of sets defined using sequential convergence. It explores open covers and compactness, and distinguishes perfect and connected sets within R. Through these topics, students gain a deep understanding of the foundational concepts underpinning real analysis.
Text	Stephen Abbott, <i>Understanding Analysis</i> , Second Edition, Springer. Chapter 1: Sections 1.1 – 1.6
	Chapter 2: Sections 2.1 – 2.7
	Chapter 3: Sections 3.1 – 3.4
References	 Robert G. Bartle, Donald R. Sherbert, <i>Introduction to Realm Analysis</i>, Fourth Edition, John Wiley & Sons. Ajit Kumar, S. Kumaresan, <i>A Basic Course in Real Analysis</i>, CRC Press. Sterling K. Berberian, A First Course in Real Analysis, Springer.

Module	Unit	Content	Hrs
Ι		Real Numbers	15
	1	Overview of real numbers	2
	2	upper bounds, lower bounds	2
		Supremum, infimum, maximum and minimum of a set	1
	3	Density of rational numbers and irrational numbers	3
		Nested Interval Property	2
	4	Existence of square roots, uncountability of (0, 1)	3
		Cantor's theorem	2
II		Sequences	15
	1	Limit of a sequence	2

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

		diverging sequences	2
	2	algebraic operations on limits	3
		order properties of sequences and limits	2
		the Monotone Convergence Theorem	2
	3	sub sequences	2
		the Bolzano -Weierstrass theorem	2
III		Infinite Series	15
	1	Cauchy's condensation test for convergence of a series	2
	2	various other tests for the convergence series	4
	3	the Cauchy criterion for convergence of a series	3
	4	rearrangement of absolutely convergent series	6
IV		Topology on <i>R</i>	15
	1	Open and closed sets in R	3
		Complements	2
	2	Compactness of sets (defined using sequential convergence)	3
		Open covers and compactness	2
	3	perfect and connected sets in R	5
R			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	analyse and evaluate the properties of real numbers, including their upper and lower bounds, supremum, infimum, maximum, and minimum, and apply these concepts to solve mathematical problems.	R, U, Ap	PSO: 1, 2, 3, 4, 5, 6, 7
CO-2	demonstrate understanding of the density of rational and irrational numbers, and utilize this knowledge to prove the uncountability of certain sets, such as the interval $(0,1)$, using Cantor's theorem.	R, U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-3	apply the Nested Interval Property to analyse intervals	E, R, U, Ap	PSO: 1, 2,

	and their properties, including the existence of square roots within the real number system.		3, 4, 5, 6, 7
CO-4	investigate the behaviour of sequences, including limits, divergence, and the existence of sub sequences, and utilize algebraic operations to manipulate and evaluate limits.	E, Ap, An, C	PSO: 1, 2, 3, 4, 5, 6, 7
CO-5	apply key convergence tests, such as the Monotone Convergence Theorem, the Bolzano-Weierstrass Theorem, and Cauchy's condensation test, to determine the convergence of series and sequences.	U, Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7
CO-6	analyse and manipulate sets in \mathbb{R} , including open and closed sets, complements, and compactness, and understand the concepts of perfect and connected sets within the real number system.	Ap, An	PSO: 1, 2, 3, 4, 5, 6, 7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

СО	СО			0	30
No.		PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
1	analyse and evaluate the properties of real numbers, including their upper and lower bounds, supremum, infimum, maximum, and minimum, and apply these concepts to solve mathematical problems.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap	F, C, P	L
2	demonstrate understanding of the density of rational and irrational numbers, and utilize this knowledge to prove the uncountability of certain sets, such as the interval $(0,1)$, using Cantor's theorem.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap, An	C, P, M	L
3	apply the Nested Interval Property to analyse intervals and their properties, including the existence of square roots within the real number system.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	E, R, U, Ap	P, M	L
4	investigate the behaviour of sequences, including limits, divergence, and the existence of sub sequences, and utilize algebraic operations to manipulate and evaluate limits.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	E, Ap, An, C	F, C, M	L
5	apply key convergence tests, such as the Monotone Convergence Theorem, the Bolzano- Weierstrass Theorem, and Cauchy's condensation test, to determine the convergence of series and sequences.	PO: 1, 2, 4, 5, 6 PSO: 1, 2, 3, 4, 5, 6, 7	U, Ap, An	F, C P	L

6	analyse and manipulate sets in \mathbb{R} , including open	PO: 1, 2, 4,	Ap,	F, M	L
	and closed sets, complements, and compactness,	5, 6	An		
	and understand the concepts of perfect and	/			
	connected sets within the real number system.	PSO: 1, 2,			
		3, 4, 5, 6, 7			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS O 7	PS O 8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 6	3	3	2	1	1	1	2	-	1	3	_	1	1	1	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			\checkmark
CO 3	✓			\checkmark
CO 4		1		\checkmark
CO 5		1		\checkmark
CO 6			~	

Discipline	MATHEM	MATHEMATICS						
Course Code	MIUK5DS0	MIUK5DSCMAT301.1						
Course Title	Complex A	nalysis						
Type of Course	DSC							
Semester	V							
Academic Level	300-399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	4	4 hours	-	-	4			
Pre- requisites	 Point Pola 	t Representationar form of Con	mplex Number on of Complex nplex Numbers m	Numbers				
	*							

	4. Schaum's Outline Series, <i>Complex Variables</i> .
Course	The course commences by exploring fundamental concepts such as complex
Summary	functions, exponential functions, exponential representation of complex functions, polar coordinates, and parametric curves in the complex plane. It delves into detailed discussions on limits, continuity, differentiability, and the properties of analytic functions. Additionally, it covers elementary functions and integration in the complex plane, Taylor series, Laurent series, zeros and poles, residues, Cauchy's residue theorem, Some consequence of residue theorem and Evaluation of Real Trigonometric Integrals are discussed in detail. The course culminates with a module on Conformal Mapping, which deals with linear mapping and conformal mapping.

Module	Unit	Content	Hrs				
Ι		Analytic Functions	15				
	1	Function, real and imaginary parts of a complex function, Exponential function, Exponential form of a complex function	3				
	2	polar coordinates	1				
	3	parametric curves in Complex Plane	3				
	4	Limits, continuity.	2				
	5	branch cut	1				
	6	Differentiability and Analyticity,	2				
	7	Cauchy - Riemann Equation, Harmonic Functions	3				
	The topics to be discussed in this module can be found in <i>Chapter 2,</i> Sections 2.1, 2.2 2.6.1, 2.6.2 (Excluding "Example 6 - discontinuity of principal square root function, Branches, Branch cuts, Points and Applications") and chapter 3, sections 1-3 of the text.						
II		Complex Integration	15				
	8	Exponential and Logarithmic functions,	3				

	9	Complex powers, Trigonometric and Hyperbolic Functions.	3
	10	Complex Integrals	3
	11	Cauchy - Goursat Theorem,	3
	12	Cauchy's Integral Formula and Their Consequences	3
	Section zeros Section (exclution 5.4 (exclution)	topics to be discussed in this module can be found in <i>Chapter 4 -</i> ons 4.1, 4.2, 4.3 (excluding trigonometric equations, modulus, s, analyticity, trigonometric mapping), 4.3.2. and Chapter 5 - ons 5.1, 5.2 (excluding the proof of a bounding theorem), 5.3 uding the proof of Cauchy Theorem, Theorem 5.3, Theorem 5.4), (Some conclusions 5, 6, 7 - proof need not be discussed and ude example 5), 5.5.1 (excluding proof of Theorems 5.10, 5.15, of the text.	
III	,	Evaluation of Real Integrals	15
	13	Sequence and Series, Talyors' Series	2
	14	Laurent Series	3
	15	Zeros and Poles, residues	3
	16	Cauchy's Residue Theorem	2
	17	Some consequence of residue theorem, Evaluation of Real Trigonometric Integrals	5
	Sectio (excl	topics to be discussed in this module can be found in <i>Chapter 6,</i> ons 6.1 (excluding the proof of theorems); Section-6.2; Section-6.3 uding the proof of Theorem 6.10); Section-6.4, 6.5, 6.6.1, 6.6.2 uding the topic Indented Contours) of the text.	
IV	(0.000	Conformal Mapping	15
	18	Linear Mappings	4
	19	Conformal Mapping	6
	20	Linear Fractional Transformation	5
	Section and	topics to be discussed in this module can be found in Chapter 2, on 2.3 and Section 7.1 (excluding the proof of Theorems 7.1, 7.2 the topic Conformal Mappings Using Tables); Section 7.2 uding the proof of Theorem 7.3 and the topic Linear Fractional	

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

Transformations as Matrices) of the text.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the limits, continuity and differentiability of complex functions.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-2	Analyze analytic functions and other elementary functions	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-3	Apply contour integration, Cauchy's theorem and Cauchy's integral formula.	R, U, Ap, E	PSO-1,2,3, 4,5, 7, 8
CO-4	Understand Series representation of complex numbers, Singular points, Zeroes and Residue of Complex functions.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Apply Taylor's Series, Laurent Series and Residue Theorem.	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8
CO-6	Understand Conformal mapping, Linear Fractional Transformation and Cross ratio.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the limits, continuity and differentiability of complex functions.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
2	Analyze analytic functions and other elementary functions	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L	
3	Apply contour integration, Cauchy's theorem and Cauchy's integral formula.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L	
4	Understand Series representation of complex numbers, Singular points, Zeroes and Residue of Complex functions.	PO-1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L	
5	Apply Taylor's Series, Laurent Series and Residue Theorem.	PO-1,2, 4,5, 6, 7	R, U, An, C	Р, М	L	
6	Understand Conformal mapping, Linear Fractional	PO-1,2,	R, U,	F, P,	L	

Transformation and Cross ratio.	4,5, 6, 7	An, C	М	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	2	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	2	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	2	1
CO 4	3	2	3	2	-	-	2	1	3	3	-	1	3	2	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	2	1
CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	2	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓	1		<u> </u>
CO 2	✓	✓		✓
CO 3	✓	1		✓
CO 4	1	✓		 ✓
CO 5	1	✓		1
CO 6	1	✓		1

Discipline	MATHEMATICS								
Course Code	MIUK5DSCMAT302.1								
Course Title	Abstract Algebra –	Abstract Algebra – Group Theory							
Type of Course	DSC								
Semester	V								
Academic Level	300 - 399								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week				
		per week	per week	per week	HOUIS/ WEEK				
	4	4 hours	-	-	4				
Pre-requisites	1. Basics of Set The	ory							
	2. Properties of Integ	gers							
	3. Modular Arithme	tic							
Text Book	Text: Joseph Gallian Cengage Learning	n, <i>Contempo</i>	rary Abstrac	t Algebra , 9tl	n Edition,				
	References:								
		I Footo Abat	ugat Alashua	2nd Edition	Wiley				
	1. D S Dummit, R M		Ũ		wney				
	2. I N Herstein, Top								
Course Summary	This course aims to topics are discussed introduce groups, is permutation groups also discussed in de groups are also discu	d with enou infinite and etc. The grou stail. The par	igh motivati finite grou ip isomorphi tition of gro	on through on subgroup on subgroup on the second se	examples. We s, cyclic and morphisms are				

Module	Unit	Content	Hrs
Ι		Group theory: Introduction	15
	1	Introducing groups using properties of integers and symmetries of a square etc. Also motivating the students using the applications in Chemistry - the study if symmetries of molecules using groups.	5
	2	Definition and examples of groups, Elementary properties of groups.	5
	3	Finite groups and subgroups.	5
	The to	pics to be discussed are from chapters 1 to 3 of the Text	
II		Cyclic Groups and Permutations	15
	4	Cyclic groups- Definition, examples, properties, and classification.	7
	5	Definition and operations on permutations, Cycle notation and properties.	7
	6	Application on Check digits shall be discussed as assignment. (excluded from end semester examination)	1
	The to	pics to be discussed are from chapters 4 and 5 of the Text	
III		Isomorphisms and Cosets	15
	7	Definition, examples, and properties of isomorphism.	6
	8	Automorphisms	3
	9	Cayley's Theorem	1
	10	Motivation, definition, and properties of cosets.	5
	The to	pics to be discussed are from chapters 6 and 7 of the Text	
IV		Lagrange's Theorem and Factor Groups	15
	11	Lagrange's Theorem and consequences.	5
	12	Application of cosets to permutation groups, rotations of cube and soccer ball	2
	13	Normal subgroups and factor groups	5
	14	Applications of Factor groups	2
	15	Internal direct products	1

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

The topics to be discussed are from chapters 7 and 9 of the Text

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the foundations in the theory of groups and acquire ability to solve related problems.	U, Ap, E	PSO -1,2,3
CO-2	Understand various properties of cyclic groups, their subgroups, and aquire ability to apply the results to solve problems related to cyclic groups.	R, U, Ap, E	PSO -1,2,3
CO-3	Understand the idea of isomorphism of groups and acquire ability to detect whether two groups are isomorphic or non- isomorphic. To understand the classic result of Cayley on finite groups.	R, U, Ap, E	PSO -1,2,3
CO-4	Understand the idea of cosets, normal subgroups, factor groups, and acquire ability to solve related problems.	R, U, Ap, E	PSO-1,2,3,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the foundations in the theory of groups and acquire ability to solve related problems.	PO- 1, 2/PSO -1,2,3	U, Ap, E	F, C	L	
2	Understand various properties of cyclic groups, their subgroups, and acquire ability to apply the results to solve problems related to cyclic groups.	PO- 1,2/ PSO - 1,2,3	R, U, Ap, E	F, C, M	L	
3	Understand the idea of isomorphism of groups and acquire ability to detect whether two groups are isomorphic or non-isomorphic. To understand the classic result of Cayley on	PO 1,2,6/ PSO - 1,2,3	R, U, Ap, E	F, C, M	L	

	finite groups.					
4	Understand the idea of cosets, normal subgroups, factor groups, and acquire ability to solve related problems.	PO 1,2,6/ PSO- 1,2,3,5	R, U, Ap, E	С, М	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	-	1	2	1	1	3	3	-	2	2	1	1
CO 2	3	3	3	1	-	-	-	-	3	3	2	2	1	-	1
CO 3	3	3	3	2	-	1	-	1	3	3	1	-	2	3	-
CO4	3	3	3	-	3	-	1	-	3	3	2	-	1	3	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			\checkmark
CO 3		1		\checkmark
CO 4		1		\checkmark

Discipline	MATHEMATICS											
Course Code	MIUK5DSEMAT30	MIUK5DSEMAT303.1										
Course Title	Numerical Methods											
Type of Course	DSE											
Semester	V	V										
Academic Level	300 - 399											
Course Details	Credit	Lecture	Tutorial	Practical	Total							
		per week	per week	per week	Hours/Week							
	4	4 hours	-	-	4							
Pre-requisites												
Text Book	1. Introductory Meth Hall India, New Del		erical Analys	sis, S.S Sastry	, Prentice							
	2. Erwin Kreyszig. AWiley-India		gineering M	athematics, 10	Oth Edition,							
Course Summary	The course begins we Analysis. Then disc algebraic and transformerical differentiation discuss some method	usses some cendental ec ation and in	classical met quations. Inte tegration are	thods to deter erpolation an also discusse	rmine roots of d methods of ed. Finally we							

Module	Unit	Content	Hrs							
Ι			20							
	1	General concepts in Numerical analysis: Introduction, Floating-Point Form of Numbers, Round off, Loss of Significant Digits, Errors of Numeric Results.								
	Solution of Equations by Iteration: Bisection Method, Newton-Raphson Method for Solving Equations $f(x) = 0$, Generalized Newton's Method, Order of an Iteration Method, Speed of Convergence, Convergence of Newton's Method.									
II	In	terpolation, Numerical Differentiation and Integration	15							
	2	Interpolation: Lagrange Interpolation for unevenly spaced points and Newton's Divided Difference Interpolation. Newton's Forward Difference and Back-ward Difference Interpolation Numerical Differentiation using forward differences. Numerical Integration: Trapezoidal Rule, Simpson's Rule of Integration.								
III		Numerical solution of ODEs	10							
	3	Numerical Solution of Ordinary Differential Equations, Methods for First-Order ODEs, Picard's Iteration method, Euler's method (Numeric Method), Improved Euler Method, Runge-Kutta Methods (RK Methods) of fourth order.								
IV		Numerical Methods ion Linear Algebra	15							
	4	Numerical Methods in Linear Algebra Linear Systems: Gauss Elimination : Matrix Inversion, Gauss-Jordan Elimination. Matrix Inversion. Linear Systems: Solution by Iteration, Gauss-Seidel Iteration Method, Jacobi Iteration								

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understanding various functions and learning techniques of differentiation involving these functions, review inverse trigonometric functions including their derivatives, learn about hyperbolic functions, understanding derivatives of hyperbolic functions.	Ap, U, R	PSO1,3
CO-2	Gain an understanding of derivatives of trigonometric functions, gain proficiency in finding derivatives of different trigonometric functions, master the concept of chain rule and implicit differentiation including their calculation.	An, E, U	PSO2,3
CO-3	Master the properties of functions, understanding important theorems in differentiation, gain the idea of partial differentiation, understanding various techniques of partial differentiation, master the concept of partial differentiation.	Ap, C, R R, C, U	PSO2,6
CO-4	Understanding different types of matrices, gain the concept of linear system of equations, row operations, row echelon form, computing solutions of linear system of equations.	An, C, U	PSO3,7
CO-5	Gain an idea of functions, including limits and continuity, master the concept of Differentiation, understanding various techniques of differentiation like product rule and quotient rule.	Ap, R, C	PSO2,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

1	Understanding various functions and learning techniques of differentiation involving these functions, review inverse trigonometric functions including their derivatives, learn about hyperbolic functions, understanding derivatives of hyperbolic functions.	PSO1,3	Ap, U, R	F, C, P	L	
2	Gain an understanding of derivatives of trigonometric functions, gain proficiency in finding derivatives of different trigonometric functions, master the concept of chain rule and implicit differentiation including their calculation.	PSO2,3	An, E, U	P,C, P	L	
3	Master the properties of functions, understanding important theorems in differentiation, gain the idea of partial differentiation, understanding various techniques of partial differentiation, master the concept of partial differentiation.	PSO2,6	Ap, C, R R, C, U	F,C, P	L	
4	Understanding different types of matrices, gain the concept of linear system of equations, row operations, row echelon form, computing solutions of linear system of equations.	PSO3,7	An, C, U	F,P,C	L	
5	Gain an idea of functions, including limits and continuity, master the concept of Differentiation, understanding various techniques of differentiation like product rule and quotient rule.	PSO2,8	Ap, R, C	F,P,C	L	

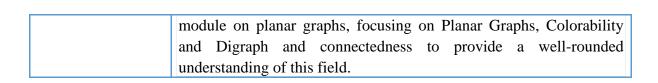
F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	2	1	3	2	1	2	2	3	3	3	2	3
CO 2	2	3	2	3	3	3	3	3	1	2	2	2	2	3	2
CO 3	3	3	1	1	1	2	2	2	3	1	1	3	3	1	1
CO 4	1	1	3	3	2	1	1	3	2	1	3	1	2	1	3
CO 5	2	3	1	1	3	2	2	3	2	3	2	2	3	3	2
CO 6	2	1	3	2	1	3	2	1	2	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High


Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			\checkmark
CO 3		1		\checkmark
CO 4		1		\checkmark
CO5		1		\checkmark

Discipline	MATHEMATICS						
Course Code	MIUK5DSEMAT304.1						
Course Title	Graph Theory						
Type of Course	DSE						
Semester	V						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	4 hours	-	-	4		
Pre-requisites	1. Basics of set	theory					
	 Text 1: Frank Harary, Graph Theory, Narosa publishing house, New Delhi. Text 2 : John Clark, Derek Allan Holton. A first look at Graph Theory, World Scientific. References 1. J A Body, U S R Murthy. Graph Theory with Applications, The Macmillan Press 2. Robin J Wilson. Introduction to Graph Theory 5th edition, Prentice Hall 3. Gary Chartrand and Ping Zhang, <i>Introduction to Graph</i> <i>Theory</i>, New Delhi, New York: Tata McGraw-Hill Pub. Co., 2006. 						
Course Summary	The course begin fundamental Gr study of concep and connectivity Further topics Hamiltonian Cy	aph Theory ts such as tro y, providing include a	concepts. Fr ees, bridges, a compreher detailed st	om there, we spanning tree nsive understa udy of Eule	delve into the es, cut vertices, anding of each. er Tours and		

Module	Unit	Content	Hrs				
Ι	Basics						
	1 Varieties of graphs, walk and connectedness						
	2	Degrees, Problem of Ramsey, Operation on graphs	4				
	3	cut points, bridges and blocks	4				
	4	The adjacency matrix, The incidence matrix	4				
	[The of tex	topics to be discussed in this module can be found in Chapter 2, 3 & C at 1]	hapter 13				
II		Trees and connectivity	15				
	5	Definitions and Simple Properties of trees, Bridges	4				
	6	Spanning Trees	3				
	7	4					
	8 Kruskal's algorithm, Prim's algorithm,						
	[The test 2	topics to be discussed in this module can be found in Chapter 2 Section	ns 1- 4 of				
III	Traversability						
	9	Eulerian graphs, TheChinese Postman Problem	7				
	10	Hamiltonian Graphs, The Travelling Salesman Problem	8				
	-	opics to be discussed in this module can be found in Chapter 7 of text Chapter 3 Sections 2- 4 of text 2].					
IV		Planar graphs	15				
	11	Plane and Planar Graphs,	2				

L

	12	Euler's Formula, Kuratowski's Theorem	5
	13	The chromatic number	5
		The five color Theorem, The four color conjecture	1
	14	Digraph and connectedness	2
	-	topics to be discussed in this module can be found in Chapter 11, chapt text 1]	er 12 and

Course Outcomes

CO	Upon completion of the course the graduate will be able to	Cognitive	PSO
No.		Level	addressed
CO- 1	To define and understand the fundamental concepts of graph theory	R, U	PSO-1,2,3, 4, 7, 8
CO- 2	To apply the concepts and theorems that are treated in the course for problem- solving and proofs	R, U, Ap	PSO-1,2,3, 4, 5, 7, 8
CO-	To develop better understanding of the subject so as to	R, U, Ap,	PSO-1,2,3,
3	use these ideas skilfully insolving real world problems		4,5, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO1	To define and understand the fundamental concepts of graph theory	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	To apply the concepts and theorems that are treated in the course for problem-solving and proofs	PO-1,2, 4,5, 6, 7	R, U, Ap, E	Р, М	L	
CO3	To develop better understanding of the subject so as to use these ideas skilfully in	PO-1,2,	R, U,	Р, М	L	

solving real world problems	4,5, 6, 7	Ap, E		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS O8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	-	-	2	2	3	3	-	1	3	2	1
CO 2	3	3	3	3	2	-	2	3	3	3	-	1	3	2	1
CO 3	3	3	3	3	2	-	2	3	3	3	-	1	3	2	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	~	1		\checkmark
CO 2	✓	1		✓
CO 3	✓	1		✓

Discipline	MATHEMATICS	MATHEMATICS						
Course Code	MIUK5SECMAT305.1							
Course Title	Data Analysis using	g Python						
Type of Course	SEC							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week			
	3	3 hours	-	-	3			
Pre-requisites	 Basic Python prog Basics of data ana 							
Text Books	2. Online tutorials an	 Wes McKinney, <i>Python for Data Analysis</i>, 2nd Edition, O'Reilly Online tutorials and documentation for Python, NumPy, Pandas, Matplotlib, and Seaborn 						
Course Summary	In this course we dis Numpy, pandas, and handling techniques	matplotlib.	Using these t	cools we discu				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Numpy and Pandas	10
	1	In this unit we discuss the basics of the python modules numpy, pandas, and matplotlib. The major topics are:	

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	 The NumPy ndarray, Universal Functions, Oriented Programming with Arrays (exclude plotting), File Input and Output with Arrays, Linear Algebra, Pseudorandom Number Generation. Introduction to pandas Data Structures, Essential Functionality, Summarizing and Computing Descriptive Statistics. 				
	The topics are to be discussed based on chapters 4 to 5 of Text1.				
II	Handling Data	20			
	2 In this unit we discuss the loading and manipulation of data. The topics are:				
	Reading and Writing Data in Text Format, Binary Data Formats, Interacting with Web APIs, Interacting with Databases, Handling				
	Missing Data, Data Transformation, String Manipulation, Hierarchical Indexing, Combining and Merging Datasets, Reshaping and Pivoting				
	The topics are to be discussed based on chapters 6, to 8 of Text1.	-			
III	Plotting and Visualization and Time series	15			
	 In this module we visualize and analyse data using different python libraries. We also introduce basics of time series analysis. The topics are: A Brief matplotlib API Primer, Plotting with pandas and seaborn. Date and Time Data Types and Tools, Time Series Basics, Date Ranges, Frequencies, and Shifting, Time Zone Handling, Periods and Period Arithmetic. 				
	The topics are to be discussed based on chapters 9 and 11 of Text1.				
	Note: Some data analysis examples are given in Chapter 14 of the Text1 which can be u	sed			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the python modules numpy, pandas, and matplotlib, and acquire ability to use various functions in these modules to solve problems.	U, Ap, C	PSO- 1,3,6
CO-2	Understand and use some data handling techniques using python and acquire ability to apply them to solve problems.	U, Ap, C	PSO- 1,3,6
CO-3	Visualize and analyse data using the plotting techniques using python modules and solve problems.	U, Ap, C	PSO- 1,3,6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 3:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the python modules NumPy, pandas, and matplotlib, and acquire ability to use various functions in these modules to solve problems.	PO 1,2/ PSO- 1,3,6	C, P	U, Ap, C	L	
2	Understand and use some data handling techniques using python and acquire ability to apply them to solve problems.	PO 1,2,3,5/ PSO- 1,3,6	C, P	U, Ap, C	L	
3	Visualize and analyse data using the plotting techniques using python modules and solve problems.	PO 1,2,5,6/ PSO- 1,3,6	С, Р	U, Ap, C	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS 03	PS O4	PS O5	PS 06	PS O7	PS O8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	2	3	-	-	3	3	2	2	2	1	1
CO 2	3	-	3	1	1	3	-	1	3	3	3	-	3	2	-
CO 3	3	2	3	-	1	3	2	-	3	3	2	-	3	3	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			\checkmark
CO 3	✓	1		\checkmark

SEMESTER – VI

Discipline	MATHEMATICS						
Course Code	MIUK6DSCMAT350.1						
Course Title	Real Analysis II						
Type of Course	DSC						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	4 hours	-	-	4		
Pre-requisites	1. Basics of set theory	y, functions					
	2. Sequences and Ser	ies					
Course Summary	 2. Sequences and Series This course provides a comprehensive study of limits, exploring various definitions and the algebraic properties of limit functions. It delves into criteria for divergence and discontinuity of functions, as well as the composition of functions and their continuity properties. Continuity concepts are further examined in the context of compact sets and results on uniform continuity. The course introduces key theorems including the intermediate value theorem, Rolle's theorem, and the mean value theorem, highlighting their significance in analyzing functions. Monotone functions and their continuity properties are explored, along with the concept of families of functions and examples. Uniform convergence of function families is discussed, leading into a thorough examination of differentiability, including definitions, algebraic 						

	extremum theorem, Darboux's theorem, and L'Hospital's rule are also covered. Transitioning to integration theory, the course explores Riemann integration, upper and lower Riemann sums, and criteria for integrability. The fundamental theorem of calculus is introduced, along with its proof, emphasizing the relationship between continuity and the existence of integrals. Algebraic operations on integrable functions are explored, providing a comprehensive understanding of integral calculus.
Text	Stephen Abbott, <i>Understanding Analysis</i> , Second Edition, Springer. Chapter 4: Sections 4.1 – 4.5
	Chapter 5: Sections $5.1 - 5.4$
	Chapter 6: Sections 6.1 – 6.3 Chapter 7: Sections 7.1 – 7.5
References	1. Robert G. Bartle, Donald R. Sherbert, <i>Introduction to Realm</i>
iterer energy	Analysis, Fourth Edition, John Wiley & Sons.
	2. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC
	Press.
	3. Sterling K. Berberian, A First Course in Real Analysis, Springer.

Module	Unit	Content	Hrs
Ι		Continuity of functions	15
	1	Various versions of definition of limits	3
		The algebra of limits of functions	2
	2	The divergence criterion for functional limits	2
		The discontinuity criterion	2
		Composition of functions and continuity	2
	3	continuity and compact sets	4
II		Uniform continuity and uniform convergence	15
	1	Results on uniform continuity	3
	2	The intermediate value theorem	2

		Monotone functions and their continuity	2			
	3	Family of functions and examples	3			
		Uniform convergence of family of functions	5			
III	Differentiability of functions					
	1	Definition of differentiability of functions	2			
		Algebra and composition of differentiable functions	2			
	2	The interior extremum theorem	2			
		Darboux's theorem	2			
		The mean value theorem	1			
		Rolle's Theorem	1			
	3	L'Hospitals rules	5			
IV		Riemann Integration	15			
	1	Theory of Riemann integration	2			
		Upper and lower Riemann sums	2			
	2	The integrability criterion	3			
		Continuity and the existence of integral	2			
	3	Algebraic operations on integrable functions	3			
		The fundamental theorem of calculus and its proof	3			

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO -1	analyse and evaluate the properties of real numbers, including their upper and lower bounds, supremum, infimum, maximum, and minimum, and apply these concepts to solve mathematical problems.	R, U, Ap	PSO: 1, 2, 3, 4, 5, 6, 7
CO -2	demonstrate understanding of the density of rational and irrational numbers, and utilize this knowledge to prove the uncountability of certain sets, such as the interval $(0,1)$, using	An	PSO: 1, 2, 3, 4, 5, 6, 7

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	Cantor's theorem.		
CO	apply the Nested Interval Property to analyse intervals and their	E, R, U, Ap	PSO: 1, 2, 3,
-3	properties, including the existence of square roots within the		4, 5, 6, 7
	real number system.		
CO	investigate the behaviour of sequences, including limits,	E, Ap, An,	PSO: 1, 2, 3,
-4	divergence, and the existence of sub sequences, and utilize	С	4, 5, 6, 7
	algebraic operations to manipulate and evaluate limits.		
CO	apply key convergence tests, such as the Monotone	U, Ap, An	PSO: 1, 2, 3,
-5	Convergence Theorem, the Bolzano-Weierstrass Theorem, and		4, 5, 6, 7
	Cauchy's condensation test, to determine the convergence of		
	series and sequences.		
CO	analyse and manipulate sets in \mathbb{R} , including open and closed	Ap, An	PSO: 1, 2, 3,
-6	sets, complements, and compactness, and understand the		4, 5, 6, 7
	concepts of perfect and connected sets within the real number		
	system.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO	СО				
No.		OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
1	analyse and evaluate the properties of real numbers, including their upper and lower bounds, supremum, infimum, maximum, and minimum, and apply these concepts to solve mathematical problems.	PO: 1, 2, 4, 5, 6 PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap	F, C, P	L
2	demonstrate understanding of the density of rational and irrational numbers, and utilize this knowledge to prove the uncountability of certain sets, such as the interval $(0,1)$, using Cantor's theorem.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	R, U, Ap, An	C, P, M	L
3	apply the Nested Interval Property to analyse intervals and their properties, including the existence of square roots within the real number system.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	E, R, U, Ap	Р, М	L
4	investigate the behaviour of sequences, including limits, divergence, and the existence of sub sequences, and utilize algebraic operations to manipulate and evaluate limits.	PO: 1, 2, 4, 5, 6 PSO: 1, 2, 3, 4, 5, 6, 7	E, Ap, An, C	F, C, M	L
5	apply key convergence tests, such as the Monotone Convergence Theorem, the Bolzano- Weierstrass Theorem, and Cauchy's condensation test, to determine the convergence	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3,	U, Ap, An	F, C P	L

	of series and sequences.	4, 5, 6, 7			
6	analyse and manipulate sets in \mathbb{R} , including open and closed sets, complements, and compactness, and understand the concepts of perfect and connected sets within the real number system.	PO: 1, 2, 4, 5, 6 / PSO: 1, 2, 3, 4, 5, 6, 7	Ap, An	F, M	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PS 07	PS O 8	PO1	PO2	PO3	PO4	PO5	PO6	PO 7
CO 1	3	3	2	1	1	1	2	I	1	3	-	1	1	1	-
CO 2	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 3	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 4	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 5	3	3	2	1	1	1	2	-	1	3	-	1	1	1	-
CO 6	3	3	2	1	1	1	2	_	1	3	_	1	1	1	-

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	1			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		✓		✓
CO 6			✓	

Discipline	MATHEMATI	MATHEMATICS									
Course Code	MIUK6DSCMA	MIUK6DSCMAT351.1									
Course Title	Operations Research										
Type of Course	DSC	DSC									
Semester	VI										
Academic Level	300 - 399	300 - 399									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	Hours/Week								
	4	3 hours	-	2 hours	5						
Pre-requisites	 Linear Equation Inequalities 	ons									
Course Summary	This course at the undergraduate level typically covers mathematical modelling, optimization techniques, and decision-making methods to solve complex problems in operations and decision sciences. It covers formulation of LPP, various methods to solve LPP, methods of transportation, assignment problems and project management techniques like CPM and PERT. This course equips students with quantitative problem-solving skills and analytical tools necessary for optimizing processes, making informed decisions, and improving efficiency in various organizational settings and preparing students for careers in operations research, management consulting, and related fields.										
Prescribed Text		na: Operation n, Trinity Pu		- Theory and	Applications,						
Reference Textbooks	1. Hamdy A Edition)	Taha: Oper	ations Resea		oduction (10th a: Operations						

3.	Research Ravindran Principles a	-	-	Solberg:	Operations	Research-

Module	Unit	Content	Hrs					
Ι		Linear Programming	15					
	1	Formulation of Linear Programming models	5					
	2	Graphical solution of Linear Programs in two variables	5					
	3	Linear Programs in standard form - basic variable - basic solution- basic feasible solution-feasible solution	5					
	[The topics to be discussed in this module can be found in Chapter 1,2,3 of the prescribed text]							
II	Simplex method	15						
	4	Solution of a Linear Programming problem using simplex method (Since Big- M method is not included in the syllabus, avoid questions in simplex method with constraints of \geq or = type).	10					
	5	Formulation of Dual LPP, Symmetrical Form, Economic Interpretation of Dual Variables, Rules for Constructing the Dual from Primal.	5					
		[The topics to be discussed in this module can be found in Chapter 4, 5 of the prescribed text]						
III		Transportation Problems	15					
	6	Linear programming formulation - Initial basic feasible solution (Vogel's approximation method/ North-west corner rule)	6					
	7	– degeneracy in basic feasible solution - Modified distribution method – optimality test.	4					
		Standard assignment problems - Hungarian method for solving an assignment problem.	5					
		[The topics to be discussed in this module can be found in Chapter 9,10 of the prescribed text]						
IV		Project Management	15					

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

8	Activity -dummy activity - event - project network, CPM (solution by network analysis only),	9
9	PERT.	6
	[The topics to be discussed in this module can be found in Chapter 13 of the prescribed text]	
	Use CAS wherever possible	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Formulate LPP and Solve LPP using Graphical method	Ap, An, E, C	1,2,3
CO-2	Determine the solution of LPP using Simplex method	Ap, An, E	1,2,3,4
CO-3	Use Vogel's Approximation method and North West corner method to solve the transportation problem and Hungarian method to solve assignment problems	An, Ap,E	1,2,3,4,5
CO-4	Apply the techniques of CPM and PERT to solve the real-life problems	Ap, An, E, C	1,2,3,4,5,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Formulate LPP and Solve LPP using Graphical method	PO 1,2/PSO 1,2,3	Ap, An, E, C	F, C	L	
2	Determine the solution of LPP using Simplex method	PO 1,2/PSO 1,2,3,4	Ap, An, E	C	L	
3	Use Vogel's Approximation method and North West corner method to solve the transportation problem and Hungarian method to solve assignment problems	PO 1,2,4,6/PS O 1,2,3,4,5	An, Ap,E	C,M	L	
4	Apply the techniques of CPM and PERT to solve the real- life problems	PO 1,2,4,6,7/ PSO 1,2,3,4,5,8	Ap, An, E, C	F, C ,M	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS	PO													
	01	02	03	04	05	06	07	08	1	2	3	4	5	6	7
CO 1	3	3	3	-	-	-	2	2	3	3	-	-	-	-	-
CO 2	3	3	3	3	-	-	-	-	3	3	2	3	1	3	-
CO 3	3	3	3	3	3	2	-	1	3	3	-	3	2	3	1
CO 4	3	3	3	3	3	2	1	3	3	3	-	3	2	3	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			✓
CO 2	✓			\checkmark
CO 3		1		✓
CO 4		✓		\checkmark

Discipline	MATHEMATICS				
Course Code	MIUK6DSCMAT35	52.1			
Course Title	Abstract Algebra –	Ring Theor	y		
Type of Course	DSC				
Semester	VI				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours/Week
		r ·· ·· ··	per week	per week	
	4	4 hours	-	-	4
Pre-requisites	1. Basics of Group T	Theory			
	2. Properties of integ multiplication.	gers, rational	numbers, an	d real number	rs, especially
	3. Modular Arithmet	tic			
Text Book	Text: Joseph Gallian Cengage Learning	n, <i>Contempo</i>	rary Abstrac	t Algebra , 9tl	n Edition,
	References:				
		I Ecoto Aba	tugat Alashu	and Edition	Wilow
	1. D S Dummit, R M		0		w ney
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2. I N Herstein, <i>Topi</i>				
Course Summary	This course aims to topics are discussed	-			
	begin with a discuss	sion on grou	p homomor	phisms and cl	assification of
	finite abelian group fields. The ideal, fac	ctor rings, a	nd related to	pics are discu	issed in detail.
	The ring homomor course. We give a				

over fields and use the results to theoretically construct a finite field of
given order.

# **Detailed Syllabus:**

Module	Unit	Content	Hrs			
Ι		Homomorphisms and Isomorphisms	15			
	1	Definition, examples, and properties of group homomorphisms	7			
	2	The first isomorphism theorem	4			
	3	Fundamental Theorem of finite abelian groups	1			
	4	Classification of finite abelian groups up to isomorphism	3			
	The to	pics to be discussed are from chapters 10 and 11 of the Text				
II		Introduction to Rings	15			
	5	Motivation, definition, examples, and properties of rings	5			
	6	Subrings	2			
	7	Integral Domains and Fields	5			
	8	Characteristic of a ring	3			
	The to	pics to be discussed are from chapters 12 and 13 of the Text				
III		Ideals, Factor Rings, and Ring Homomorphisms				
	9	Ideals, Factor rings	5			
	10	Prime and Maximal ideals	3			
	11	Definition, examples, and properties of ring homomorphisms	5			
	12	Field of quotients of an Integral domain	2			
	The topics to be discussed are from chapters 14 and 15 of the Text					
IV		Polynomials in Rings and their factorization	15			
	13	Polynomials - introduction and related terminology	5			
	14	Division Algorithm of polynomials	2			

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	15	Consequences of division algorithm
	16	Reducibility and irreducibility tests, construction of finite fields

17Unique factorization of polynomials over integersThe topics to be discussed are from chapters 16 and 17 of the Text

#### **Course Outcomes**

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the idea of group homomorphism and acquire ability to determine homomorphisms between finite cyclic groups.	U, R, Ap, E	PSO-1,2
CO-2	Acquire the ability to classify groups based on the fundamental theorem of Isomorphism for Finitely Generated Abelian Groups	U, Ap	PSO-1,2
CO-3	Get a strong foundation various structures ring, integral domain, and field. Acquire ability to apply the results to solve problems.	U, R, Ap, E	PSO-1,2,3
CO-4	Understanding the notion of ideals, factor rings and acquire ability to solve the related problems.	U, R, Ap, E	PSO-1,2,3
CO-5	Understand the factorization and irreducibility of polynomials over rings and fields. Acquire ability to identify irreducible polynomials and theoretically construct finite fields of given order.	U, R, Ap, E	PSO-1,2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

#### Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	OSQ/OA	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the idea of group homomorphism and acquire ability to determine homomorphisms between finite cyclic groups.	PO 1,2/PSO-1,2	U, R, Ap, E	F, C	L	
2	Acquire the ability to classify groups based on the fundamental theorem of Isomorphism for Finitely Generated Abelian Groups	PO 1,2/PSO-1,2	U, Ap	F, C	L	
3	Get a strong foundation various structures ring, integral domain, and field. Acquire ability to apply the results to solve problems.	PO 1,2/PSO- 1,2,3	U, R, Ap, E	F, C	L	
4	Understanding the notion of ideals, factor rings	PO 1,2,6/PSO-	U, R,	F, C,		

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

2

5

	and acquire ability to solve the related problems.	1,2,3	Ap, E	М		
5	Understand the factorization and irreducibility of polynomials over rings and fields. Acquire ability to identify irreducible polynomials and theoretically construct finite fields of given order.	PO 1,2,6/PSO- 1,2,3,4	U, R, Ap, E	F, C,M	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

#### Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS 06	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	-	1	-	1	3	3	2	2	-	-	1
CO 2	3	3	2	1	1	-	2	2	3	3	1	1	1	2	-
CO 3	3	3	3	-	1	1	2	-	3	3	1	-	1	-	1
CO4	3	3	3	2	-	2	-	1	3	3	2	1	-	3	-
CO5	3	3	2	2	1	3	2	-	3	3	2	1	1	3	1

#### **Correlation Levels:**

Level	Correlation						
-	Nil						
1	Slightly / Low						
2	Moderate / Medium						
3	Substantial / High						

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			$\checkmark$
CO 2	1			$\checkmark$
CO 3	1			$\checkmark$
CO 4		1		$\checkmark$
CO 5		1		$\checkmark$



Discipline	MATHEMATICS							
Course Code	MIUK6DSEMAT35	MIUK6DSEMAT353.1						
Course Title	Differential Equati	ons						
Type of Course	DSE							
Semester	VI							
Academic Level	300 - 399							
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total Hours/Week			
		per week per week Per week Hours/Week						
	4	4 4 hours 4						
Pre-requisites	Differentiation, Poly	nomials, Inte	egration.					
Text Book	Edition, Wiley-India Text.2 B.S. Grewal, Khanna Publishers. <b>References:</b> 1. K. F. Riley, M. P. <i>Physics and Engine</i> 2. H. Anton, I. Biver &Sons. 3. George. B. Afken <i>Mathematical Metho</i> 4. Mary L. Boas, <i>Ma</i>	<ul> <li>Text.1 Erwin Kreyszig, Advanced Engineering Mathematics, 10th</li> <li>Edition, Wiley-India.</li> <li>Text.2 B.S. Grewal, Higher Engineering Mathematics, 42nd Edition,</li> <li>Khanna Publishers.</li> <li><b>References:</b></li> <li>K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press.</li> <li>H. Anton, I. Bivens, S. Davis, Calculus, 10th Edition, John Wiley</li> </ul>						
Course Summary	The course covers equations (first orde	-	-	-				

with the study of first order differential equation. Separable differential equation, Exact differential equation, Bernoulli's differential equation, Homogeneous differential equation are introduced here. Differential equations of first order and higher degree are studied. Linear differential equation with constant coefficient are studied. We discuss second order equations and various methods to solve them. Sufficient of exercises also should be done for understanding the concept thoroughly. The main topics in this module are the following. Homogeneous linear differential equation of second order, Basis and general solutions, finding a basis when one solution is known, Euler – Cauchy equations, existence and uniqueness of solutions with respect to Wronskian, Method of Undetermined coefficients, solution by Variation of parameters, Modeling of Mass – spring system, Forced oscillation and Resonance.

#### **Detailed Syllabus:**

Module	Unit	Content	Hrs				
Ι		First Order Ordinary Differential Equation	20				
	1	Basic concept of a differential equation, its solution, initial value problems, separable ODE, reduction to separable form, exact ODEs and integrating factors. Reducing to exact form.	5				
	Homogeneous and non- homogeneous linear ODEs, special equations like Bernoulli's equation. Equations of the First Order and Higher Degree, Clairaut's Equation. Understanding the existence uniqueness of solutions theorem.1Image: The tenies in this module can be found in Chapter 1 of Text 11						
		[The topics in this module can be found in Chapter 1 of Text.1]					
Π		Linear Differential Equations with constant coefficients	10				
	2	Definitions, Operator D, Rules for finding Complementary function, Rules for finding the Particular integrals. Working procedure to solve the equation, Linear Dependence of solutions.					
	[The topics in this module can be found in Chapter 13: section 13.1 to 13.6 Text.2]						
III	Second Order Ordinary Differential Equation						
		Homogeneous linear differential equation of second order, initial value problem, Basis and general solutions, finding a basis when					

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

	3	one solution is known, Euler – Cauchy equations, existence and uniqueness of solutions with respect to Wronskian, solving non- homogeneous ODE via the Method of Undetermined coefficients, solution by Variation of parameters.	5					
			15					
		[The topics in this module can be found in Chapter 2 of Text. 1]						
III								
IV		Application of Ordinary Differential Equation	10					
	4	Modelling of Mass – spring system, Forced oscillation and Resonance.						
	[The topics in this module can be found in Chapter 2 of Text. 1]							
		Course Outcomes						

No.	Upon completion of the course the graduate will be able	Cognitive	PSO
	to	Level	addressed
CO-1	Gain an idea of Differential equation. Understanding	Ap, R, C	PSO-1,3
	different types of first order differential equation.		
	Ability to solve first order differential equation.		
CO-2	Master to solve first order differential equation.	An, E, U	PSO-1,7
	Recognise different first order differential		
	equation and identify the method to solve them.		
	Understanding the existence uniqueness of		
	solutions theorem.		
CO-3	Gain the idea of second order differential equation,	An, R, U	PSO-1,5
	finding a basis when one solution is known,		
	Understanding. Euler-Cauchy equation,		
	understanding existence and uniqueness of solutions		
CO-4	Recognise second order ordinary differential	C, R, E	PSO-2,8
	equation, Understanding different methods to solve		
	second order ordinary differential		
CO-5	Application of differential equation. Gain proficiency	Ap, U, C	PSO-1,4
	in application.		

### R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO No.	СО	OSA /OA	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
CO- 1	Gain an idea of Differential equation. Understanding different types of first order differential equation. Ability to solve first order differential equation.	PSO-1,3	Ap, R, C	F, C	L
CO- 2	Master to solve first order differential equation. Recognise different first order differential equation and identify the method to solve them. Understanding the existence uniqueness of solutions theorem.	PSO-1,7	An, E, U	Р	L
CO- 3	Gain the idea of second order differential equation, finding a basis when one solution is known, Understanding. Euler-Cauchy equation, understanding existence and uniqueness of solutions	PSO-1,5	An, R, U	С	L
CO- 4	Recognise second order ordinary differential equation, Understanding different methods to solve second order ordinary differential	PSO-2,8	C, R, E	U	L
CO- 5	Application of differential equation. Gain proficiency in application.	PSO-1,4	Ap, U, C	F, C	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

### Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	3	3	3	2	1	2	2	3	3	3	2	3
CO 2	3	2	2	3	2	2	3	3	1	3	2	2	2	2	2
CO 3	2	2	1	2	1	1	3	2	3	3	1	1	3	2	1
CO 4	1	3	3	3	2	3	1	1	2	1	2	3	2	1	2
CO 5	2	3	2	1	3	2	2	2	3	2	3	2	2	3	2

#### **Correlation Levels:**

Level	Correlation					
- Nil						
1	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					



#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			$\checkmark$
CO 2	1			$\checkmark$
CO 3	1			$\checkmark$
CO 4		1		$\checkmark$
CO 5		1		$\checkmark$



Discipline	MATHEMATICS						
Course Code	MIUK6DSEMAT354.1						
Course Title	Integral Transform	ıs					
Type of Course	DSE						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	4 hours	-	-	4		
Pre-requisites	<ol> <li>Differentiation</li> <li>Integration</li> </ol>	on					
Course Summary	Integral Transforms is a mathematical course that delves into the study of transforming functions from one domain to another through integral operators. The course explores various integral transforms, their properties, and their applications in solving differential equations and analyzing signals and systems. It covers fundamental concepts, problem- solving techniques, and practical applications in mathematics, engineering, physics, and other fields.						
Text Book	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India						
Reference Textbooks	<ol> <li>Peter V. O' Neil, Advanced Engineering Mathematics, Thompson Publications, 2007</li> <li>M Greenberg, Advanced Engineering Mathematics, 2nd Edition, Prentice Hall.</li> <li>B.S Grewal, Higher Engineering Mathematics, Khanna Publishers</li> </ol>						

# **Detailed Syllabus:**

Module	Unit	Content	Hrs				
Ι		Laplace Transforms - Introduction	15				
	1	Laplace Transform-Linearity. First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals-ODEs, Unit Step Function (Heaviside Function)-Second Shifting Theorem (t-Shifting)					
	The topics to be discussed are from Chapter 6, Sections 1-3 of Text						
II	Laplace Transforms - Applications         1						
	2	Motivation, definition, examples, and properties of ringsShort Impulses-Dirac's Delta Function-Partial Fractions, Convolution-Integral Equations, Differentiation and Integration of Transforms-ODEs with Variable Coefficients, Systems of ODEs					
	The topics to be discussed are from Chapter 6, Sections 3-7 of Text						
III		Fourier Series	15				
	3	Fourier Series, Basic Examples, Derivation of the Euler Formulas, Convergence and Sum of a Fourier Series, Arbitrary Period-Even and Odd Functions-Half-Range Expansions from Period 2 to any Period $P =$ 2L, Simplifications: Even and Odd Functions, Half-Range Expansions					
	The to	opics to be discussed are from Chapter 11, Sections 1-2 of Text					
IV		Fourier Transforms	15				
	4	Fourier Integral, From Fourier Series to Fourier Integral, Applications of Fourier Integrals, Fourier Cosine Integral and Fourier Sine Integral, Fourier Cosine and Sine Transforms, Linearity, Transforms of Derivatives, Fourier Transform, Complex Form of the Fourier Integral, Fourier Transform and Its Inverse, Linearity. Fourier Transform of Derivatives, Convolution.					
	The to	ppics to be discussed are from Chapter 11, Sections 7-9 of Text					

# **Course Outcomes**

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addressed

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum	193
------------------------------------------------------------------------	-----

CO-1	Identify and describe common integral transforms	U, Ap,E	PSO-1,2,3
	such as the Laplace transform and apply first shifting	-	
	theorem to solve problems related to it		
CO-2	Apply integral transform techniques to solve ordinary	Ap, An,E	PSO-
	differential equations arising in engineering, physics,	-	1,2,3,5,6,8
	and other fields and Use integral transforms to		
	analyze and solve boundary value problems and		
	initial value problems,		
CO-3	Derive solutions of Fourier Series by applying the	Ар	PSO-
	Euler's Formula	-	1,2,3,4
CO-4	Apply integral transform techniques to real-world	Ap, An, E,	PSO-1,2,3
	problems in engineering, physics, and other	-	
	disciplines, interpret and explain the physical		
	significance of transformed functions and their		
	implications for practical applications.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

## Name of the Course: Credits: 4:0:0 (Lecture:Tutorial:Practical)

C O No ·	СО	OS4/04	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Identify and describe common integral transforms such as the Laplace transform and apply first shifting theorem to solve problems related to it	PO 1,2 /PSO-1,2,3	U, Ap,E	F, C	L	
2	Apply integral transform techniques to solve ordinary differential equations arising in engineering, physics, and other fields and Use integral transforms to analyze and solve boundary value problems and initial value problems,	PO 1,2,6/PSO- 1,2,3,5,6,8	Ap, An,E	C,M	L	
3	Derive solutions of Fourier Series by applying the Euler's Formula	PO 1,2,6/ PSO-1,2,3,4	Ар	С, Р	L	
4	Apply integral transform techniques to real-world problems in engineering, physics, and other disciplines, interpret and explain the physical significance of transformed functions and their implications for practical applications.	PO 1,2 5,6,7/ PSO- 1,2,3	Ap, An, E,	F,C,M	L	

### F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum



	PS	PO													
	01	02	03	04	05	06	07	08	1	2	3	4	5	6	7
CO 1	3	3	3	-	-	-	-	-	3	3	2	-	-	1	1
CO 2	3	3	3	2	3	3	1	3	3	3	-	-	1	3	2
<b>CO 3</b>	3	3	3	3	2	-	-	1	3	3	-	1	2	3	1
<b>CO 4</b>	3	3	3	2	-	-	1	-	3	3	2	-	3	3	3

#### Mapping of COs with PSOs and POs :

**Correlation Levels:** 

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	V			✓ ✓
CO 2	1	1		✓
CO 3		1		✓
CO 4		✓		1



Discipline	MATHEMATICS							
Course Code	MIUK6SECMAT35	MIUK6SECMAT355.1						
Course Title	Introduction to Ma	chine Learn	ing					
Type of Course	SEC							
Semester	VI							
Academic Level	300 - 399							
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total Hours/Week			
		per week	per week	per week	Hours/ week			
	3		-	-	3			
Pre-requisites	Basic calculus							
	Linear algebra (matr	ix operation	s, eigenvalue	s, eigenvector	rs)			
	Probability and stati- variance)	stics (probab	ility distribu	tions, expecte	d value,			
Text Books	<ol> <li>Alpaydin E, Introduction to machine learning, MIT press, 2009.</li> <li>Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining Concepts and Techniques, Third Edition, Morgan Kaufmann, Elsevier.</li> <li>Simon Haykin, Neural Networks, Pearson.</li> <li>Andreas C. Muller and Sarah Guido, Introduction to machine learning with Python:</li> </ol>							
Course Summary	This course introduces undergraduate mathematics students to the fundamentals of machine learning, focusing on mathematical principles, algorithms, and applications. Students will learn various techniques for supervised and unsupervised learning, including regression, classification, clustering, dimensionality reduction, and optimization. Practical using Python has to be done.							

# **Detailed Syllabus:**

Module	Unit	Content	Hrs				
Ι		Supervised Learning					
	Overview of machine learning, Types of machine learning (supervised, unsupervised, reinforcement learning), Linear regression, over fitting/under fitting, bias/variance, model evaluation techniques, k- nearest neighbour, Logistic regression, naive bias classifier, Decision Trees and Random Forests						
II		Unsupervised Learning					
		K-means clustering, Hierarchical clustering, Principal Component Analysis (PCA), association rules, apriori algorithm, Ensemble learning, bagging/boosting, adaboost, outlier mining, class imbalance, multi class classification	15				
III		Neural Networks					
		Fundamentals of artificial neural networks, operations in a neuron, activation functions, universal approximation theorem, single layer perceptron, back propagation algorithm, multilayer feedforward networks, associative memories.	15				
		<u> </u>					

## **Course Outcomes**

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the basics of machine learning.	R,U	PSO 2,3,4,6,7
CO-2	Understand supervised learning and apply the knowledge to do related problems.	R,U, Ap	PSO 2,3,4,6,7
CO-3	Understand unsupervised learning and apply the knowledge to do related problems.	R,U, Ap	PSO 2,3,4,6,7
CO-4	Understand the basics of Neural network	R,U	PSO 2,3,4,6,7

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

### R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

#### Name of the Course: Credits: 3:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Understand the basics of machine learning.	PO 1,2/ PSO 2,3,4,6,7	R,U	С, М	L	
2	Understand supervised learning and apply the knowledge to do related problems.	PO 1,2/ PSO 2,3,4,6,7	R,U, Ap	М	L	
3	Understand unsupervised learning and apply the knowledge to do related problems.	PO 1,2,5,6/ PSO 2,3,4,6,7	R,U, Ap	М	L	
4	Understand the basics of Neural network	PO 4,5,6,7/ PSO 2,3,4,6,7	R,U	М	L	

#### F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS O6	PSO 7	PSO 8	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	3	1	3	3	1	3	3	2	2	1	1	-
CO 2	2	3	3	3	-	3	3	1	3	3	1	1	2	-	1



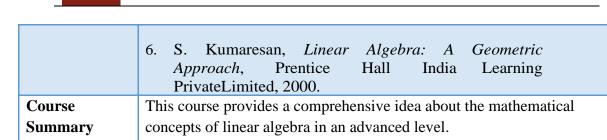
CO 3	2	3	3	3	1	3	3	_	3	3	2	_	3	3	1
CO4	2	3	3	3	-	3	3	1	2	2	1	3	3	3	3

**Correlation Levels:** 

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam


	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	~			1
CO 2	~			1
CO 3		1		<i>✓</i>
CO 4		1		<i>√</i>

# **SEMESTER – VII**

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum



Discipline	MATHEMATICS								
Course Code	MIUK7DSCMAT400.1								
Course Title	Advanced Linear A	lgebra							
Type of Course	DSC								
Semester	VII								
Academic Level	400-499								
<b>Course Details</b>	Credit	Credit Lecture Tutorial Practical Total							
		per week per week Per week Hours/Wee							
	4	4 4 hours 4							
Pre-requisites	<ul> <li>Subspaces</li> </ul>	<ul> <li>Vector spaces</li> <li>Subspaces</li> <li>Bases and dimension</li> </ul>							
	Springer, 201 References 1. David Poole, <i>L</i> ed.), Cengage L 2. Gilbert Strang, <i>L</i> Cengage Learnin 3. Kenneth Hoffm ed.), Prentice L 1978.	<ul> <li>Text: M. Thamban Nair and Arindama Singh, <i>Linear Algebra</i>, Springer, 2018.</li> <li>References <ol> <li>David Poole, <i>Linear Algebra: A Modern Introduction</i> (IV ed.), Cengage Learning,2015.</li> </ol> </li> <li>Gilbert Strang, <i>Linear Algebra and its Applications</i> (IV ed.), Cengage Learning (RS),2005.</li> <li>Kenneth Hoffman, Ray Kunze, <i>Linear Algebra</i> (II ed.), Prentice Hall India Learning Private Limited, 1978.</li> <li>Peter Petersen, <i>Linear Algebra</i>, Springer, 2012.</li> </ul>							



Module	Unit	Content	Hrs						
		Vector spaces							
I	Ι	Vector space, subspaces, linear span, linear independence, Basis and dimension, Basis of any vector space, Sums of subspaces, Quotient space.	15						
	The t the te	opics to be discussed in this module can be found in Sections 1.1 ext.	to 1.9 of						
		Linear transformations							
II	Π	Representation, change of basis, Space of linear transformations.							
	The t the te	opics to be discussed in this module can be found in Sections 2.1 ext.	to 2.7 of						
		Elementary Operations							
Ш	III       Elementary row operations, Row echelon form, Row reduced echelon form, Reduction to rank echelon form, Determinant, linear equations, Gaussian and Gaussian Jordan elimination.								
	<b>The topics to be discussed in this module can be found in</b> Sections 3.1 to 3.8 <i>op</i> <b>the text.</b>								
		Eigenvalues and Eigenvectors and Block diagonal							



		representation					
Ιν	IV	<ul> <li>Existence of eigenvalues, Characteristic polynomial,</li> <li>Eigenspace, Generalized eigenvectors, Two annihilating polynomials.</li> <li>Diagonalizability, Triangularizability and Block- diagonalization, Schur Triangularizations, Jordan block, Jordan Normal form.</li> </ul>	15				
	The topics to be discussed in this module can be found in Sections 5.1 to 5.6 and Sections 6.1 to 6.60f the text .						

#### **Course Outcomes**

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Write the basis of a vector space, compute its dimension, set up sums of subspaces etc.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-2	Practice various row reduction techniques of matrices in order to solve systems of linear equations.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-3	Describe rank and nullity of a linear transformation in connection with solution of linear equations.	R, U, Ap, E	PSO-1,2,3, 4,5, 7, 8
CO-4	Employ different methods to compute eigen values and eigen vectors, which will be very useful for higherstudies and research.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Summarize different types of representations of lineartransformations along with their uses.	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8
CO-6	Develop critical thinking skills by applying linear algebraic techniques to solve complex problems, formulate conjectures, and analyze the validity of mathematical arguments.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

# R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

### Advanced Linear Algebra: Credits: 4:0:0 (Lecture: Tutorial: Practical)

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO No.	СО	PO/ PSO	Cogni tive Level	Knowl edge Catego ry	Lect ure (L)/ Tuto rial (T)	Pra ctic al (P)
CO1	Write the basis of a vector space, compute its dimension, set up sums of subspaces etc.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Practice various row reduction techniques of matrices in order to solve systems of linear equations.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L	
CO3	Describe rank and nullity of a linear transformation in connection with solution of linear equations.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L	
CO 4	Employ different methods to compute eigen values and eigen vectors, which will be very useful for higherstudies and research	PO- 1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L	
CO 5	Summarize different types of representations of linear transformations along with their uses.	PO- 1,2, 4,5, 6, 7	R, U, An, C	Р, М	L	
CO 6	Develop critical thinking skills by applying linear algebraic techniques to solve complex problems, formulate conjectures, and analyze the validity of mathematical arguments.	PO- 1,2, 4,5, 6, 7	R, U, An, C	F, P, M	L	

### F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	PS O8	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 4	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum



### **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1				
CO 1 CO 2	v (	V		V (
	<b>v</b>	<b>v</b>		V (
CO 3		<i></i>		<b>v</b>
CO 4	<b>/</b>			
CO 5	<i>✓</i>	$\checkmark$		✓
CO 6	✓	$\checkmark$		$\checkmark$



Discipline	MATHEMATICS										
Course Code	MIUK7DSCMAT401.1										
Course Title	Advanced Real Analysis										
Type of Course	DSC										
Semester	VII										
Academic Level	400-499										
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total Hours/Week						
		per week	per week	per week	Hours/week						
	4	4 hours	-	-	4						
Pre-requisites	<ul> <li>sequences, an</li> <li>Understanding arithmetic operation</li> </ul>	ith basic cond d limits, g of elementa erations ing skills, cri	cepts of analy ary properties tical thinking	ysis, such as s s of real numb	ets, functions, pers and their a willingness to						
	<ol> <li>Text:</li> <li>Tom M. Aposto 1974.</li> <li>Sudhir R. Ghory <i>Multivariate Ca</i></li> <li>References         <ol> <li>J. A. Dieudonne 1960.</li> </ol> </li> </ol>	pade and Ba	almohan V I <i>nalysis</i> , Spr	Limaye, <i>A co</i> inger, 2010.	ourse in						



	<ol> <li>W. Rudin, <i>Real and Complex analysis</i>, Third Edition, Tata Mc-Graw Hill, 1987.</li> <li>Tom M. Apostol, <i>Calculus</i>, Volume-1, Second Edition, Wiley, 1991.</li> <li>Tom M. Apostol, Calculus, Volume-2, Second Edition, Wiley, 1075</li> </ol>
	<ol> <li>1975.</li> <li>N. L. Carothers, <i>Real Analysis</i>, Cambridge University Press, 2000.</li> </ol>
Course	This course delves into the rigorous and profound principles of advanced
Summary	calculus and real analysis. It builds upon foundational concepts from calculus and extends them into more abstract and complex realms, providing students with a deeper understanding of mathematical analysis.

Module	Unit	Content	Hrs
		Functions of Bounded Variation and Rectifiable Curves	
Ι	Ι	Properties of monotonic functions, Functions of bounded variation, Total variation, Additive property of total variation, Total variation on [a, x] as an increasing function, Function of bounded variation expressed as the difference of increasing functions, Continuous functions of bounded variation, Curves and paths, Rectifiable paths and arc length, Additivity and continuity of arc length, Equivalence of paths, Change of parameter	15
	The t	opics to be discussed in this module can be found in Chapter 6	of text 1.
		The Riemann - Stieltjles Integral	
Ш	Π	The definition of Riemann - Steiltjles integral, Linear properties, Integration by parts, Change of variable in a Riemann - Stieltjes integral, Reduction to a Riemann integral, Step functions as integrators, Reduction of a Riemann - Stieltjes integral to a finite sum, Euler's summation formula, Monotonically increasing integrators, Upper and lower integrals, Additive and linear properties of upper and lower integrals, Riemann's condition, Comparison Theorems,	15

-		1									
		Integrators of bounded variation, Sufficient									
		conditions for the existence of Riemann - Stieltjes									
		integrals, Differentiation under the integral sign.									
	The t	opics to be discussed in this module can be found in Chapter 7:	Sections								
	7.1 - 7	7.1 - 7.16 and 7.24 of) of text 1.									
		Sequence of Functions									
III	III	Point-wise convergence of sequences of functions,	15								
		Examples of sequences of real-valued functions,									
		Definition of uniform convergence, Uniform									
		convergence and continuity, the Cauchy condition									
		for uniform convergence, Uniform convergence of									
		infinite series of functions, Uniform convergence and									
		Riemann - Stieltjes integration, Non-uniformly									
		convergent series that can be integrated term by term,									
		uniform convergence and differentiation, sufficient									
		conditions for uniform convergence of a series.									
			~ .								
		<b>copics to be discussed in this module can be found in</b> Chapter 9:	Sections								
	9.1-9	.9 (excluding Section 9.7) of text 1.									
		Multivariate Calculus, Sequences, Continuity and Limits,									
		Partial and Total Differentiation									
IV	IV	Sequences in $\mathbb{R}^2$ , Sub- sequences and Cauchy	15								
		sequences, Compositions of continues functions,									
		Piecing continuous functions on overlapping subsets,									
		Characterizations of continuity, Continuity and									
		boundedness, Continuity and convexity, Continuity									
		and intermediate value property, Uniform continuity,									
		Implicit function Theorem, Limits and continuity.									
		Partial derivative, Directional derivatives, Higher									
		order partial derivatives, Higher order directional									
		derivatives, Differentiability, Taylor's Theorem and									
		Chain rule, Functions of three variables, Extensions									

	and analogues, Tangent planes normal lines to surfaces.
2.1, 2 Bound	<b>opics to be discussed in this module can be found in</b> Chapter 2: Sections 2.2 (excluding Continuity and monotonicity, Continuity, BoundedVariation, ded Bivariation), 2.3 (Excluding Limits from a quadrant, Approaching ty) and excluding Section 3.4 and last subsection of Section 3.5) of text 2.

### **Course Outcomes**

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Classify and explain the notions of limit points, convergent and Cauchy sequences, continuity, connectedness and compactness, monotonic functions and bounded variations and to derive the proofs related to these concepts.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-2	Summarize how completeness, continuity and other notions are generalized from the real line to metric spaces.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-3	Employ the Riemann - Stieltjes integrability condition of abounde dfunction and prove a selected number of theorems and concerning integration.	R, U, Ap, E	PSO-1,2,3, 4,5, 7, 8
CO-4	Recognize the differences between point wise and uniform convergence of a sequence of functions.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Calculate the limits of two variable functions, and get the idea that, the existence of partial derivatives will not imply the differentiability of the function as in single variable case.	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8
CO-6	Enhance critical thinking skills by solving challenging mathematical problems and exercises, which require logical reasoning and creative problem-solving techniques.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Real Analysis: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cogni tive Level	Knowl edge Catego ry	Lect ure (L)/ Tuto rial (T)	Pra ctic al (P)
CO1	Classify and explain the notions of limit points, convergent and Cauchy sequences, continuity, connectedness and compactness, monotonic functions and bounded variations and to derive the proofs related to these concepts.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Summarize how completeness, ontinuity and other notions are generalized from the real line to metric spaces	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L	
CO3	Employ the Riemann - Stieltjes integrability condition of a bounded function and prove a selected number of theorems and concerning integration.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L	
CO 4	Recognize the differences between point wise and uniform convergence of a sequence of functions.	PO- 1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L	
CO 5	Calculate the limits of two variable functions, and get the idea that, the existence of partial derivatives will not imply the differentiability of the function as in single variable case.	PO- 1,2, 4,5, 6, 7	R, U, An, C	Р, М	L	
CO 6	Enhance critical thinking skills by solving challenging mathematical problems and exercises, which require logical reasoning and creative problem-solving techniques.	PO- 1,2, 4,5, 6, 7	R, U, An, C	F, P, M	L	

### F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS 01	PS O2	PS 03	PS O4	PS 05	PS 06	PS 07	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1

### Mapping of COs with PSOs and POs :

_																
	CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1
	CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1

#### **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	$\checkmark$	$\checkmark$		$\checkmark$
CO 2	✓	✓		$\checkmark$
CO 3	✓	✓		$\checkmark$
CO 4	1	~		$\checkmark$
CO 5	1	~		$\checkmark$
CO 6	1	<b>\</b>		$\checkmark$



Discipline	MATHEMATICS							
Course Code	MIUK7DSCMAT402.1							
Course Title	Topology							
Type of Course	DSC							
Semester	VII							
Academic Level	400-499							
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total Hours/Week			
		per week	per week	per week	Hours/ week			
	4	4 hours	-	-	4			
Pre-requisites	<ul> <li>Basic knowle</li> <li>Familiarity convergence.</li> <li>Comfort with</li> </ul>	with conce	pts such a	as limits, co	-			
	<ul> <li>Text: Principles of Topology, <i>Fred H. Croom</i>, Baba Barkha Nath Printers (India), Third Reprint, 2009.</li> <li>References</li> <li>1. Gerald Buskes, Arnoud van Rooiji, <i>Topological Spaces from</i></li> <li>2. James R. Munkres, <i>Topology</i>, PHI Learning Private Limited, Second Edition, 2009.</li> <li>3. Stephen Willard, <i>General Topology</i>, Dover Publications, 1970.</li> <li>4. G. F. Simmons, <i>Topology and Modern Analysis</i>, Mc Graw-Hill Inc, New York, 13threprint, 2010.</li> </ul>							



	<ol> <li>J. Arthur Seebach, Lynn Arthur Steen, Counter Examples in Topology, DoverPublications, 1995.</li> <li>Sheldon W. Davis, Topology, Tata Mc Graw-Hill, 2006.</li> </ol>
Course Summary	This course provides an introduction to fundamental concepts in topology and analysis, focusing on the study of metric spaces, continuous functions, and topological spaces. Students will develop a solid understanding of the basic structures and properties of these mathematical spaces, as well as their applications in various branches of mathematics and beyond.

Module	Unit	Content	Hrs						
		Metric Spaces							
Ι	Ι	Definition, Examples, Open Sets, Closed Sets, Interior, Closure and Boundary.	15						
	<b>The topics to be discussed in this module can be found in</b> . Sections: 3.1, 3.2 and 3.3 <i>of</i> <b>the text.</b>								
		<b>Continuous Functions</b>							
II	Π	Equivalence of metric spaces, Complete metric spaces, Cantor's IntersectionTheorem. [Sections: 3.4, 3.5 and 3.7 (Exercise may be included 3.7(3)].	15						
	The topics to be discussed in this module can be found in Sections: 3.4, 3.5 and3.7 (Exercise may be included 3.7(3) of the text.								
	-								
		Topological Spaces							
III	III       III       Definition, Examples, Interior, Closure, Boundary,         Base, Sub base, Continuity, Topological Equivalence,       Subspaces.								
	<b>The topics to be discussed in this module can be found in</b> Sections: 4.1, 4.2, 4.3, 4.4 and 4.5 <i>of</i> <b>the text.</b>								



	Connectedness disconnected and Compact spaces	
IV	Theorems on connectedness, connected subsets of real line, Applications of Connectedness, Path connected spaces. compactness and continuity, properties related to compactness, one point compactification.	15
	•	, 5.2,
	The t	IV       Theorems on connectedness, connected subsets of real line, Applications of Connectedness, Path connected spaces. compactness and continuity, properties related

### **Course Outcomes**

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Construct topological spaces from metric spaces	R, U, Ap, E	PSO-1,2,3,
	and using general properties of neighborhoods,		4, 7, 8
	open sets, closed sets, basis and sub basis.		
CO-2	Apply the properties of open sets, closed sets,	R, U, Ap, E	PSO-1,2,3,
	interior points, accumulation points and derived		4, 7, 8
	sets in deriving the proofs of various theorems.		
CO-3	Interpret and apply the concepts of countable	R, U, Ap, E	PSO-1,2,3,
	spaces and separable spaces.		4,5, 7, 8
CO-4	Demonstrate compactification and related	R, U, Ap, E	PSO-1,2,
	theorems		3, 4, 7, 8
CO-5	Justify the concepts and properties of the	R, U, Ap, E	PSO-
	compactand connected topological spaces.		1,2,3,4,5,7,
			8
CO-6	Apply topological concepts to solve problems in	R, U, Ap, E	PSO-1,2,
	various mathematical contexts.		3, 4, 7, 8

# R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

### **Topology: Credits: 4:0:0 (Lecture: Tutorial: Practical)**

CO No.	СО	PO/ PSO	Cogni tive Level	Knowl edge Catego ry	Lect ure (L)/ Tuto rial (T)	Pra ctic al (P)
CO1	Construct topological spaces from metric spaces and using general properties of neighborhoods, open sets, closed sets, basis and sub basis.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Apply the properties of open sets, closed sets, interior points, accumulation points and derived sets in deriving the proofs of various theorems.	PO- 1,2, 4,5, 6,7	R, U, Ap, E	F,P, M	L	
CO3	Interpret and apply the concepts of countable spaces and separable spaces.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L	
CO 4	Demonstrate compactification and related theorems	PO- 1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L	
CO 5	Justify the concepts and properties of the compactand connected topological spaces.	PO- 1,2, 4,5, 6, 7	R, U, An, C	P, M	L	
CO 6	Apply topological concepts to solve problems in various mathematical contexts.	PO- 1,2, 4,5, 6, 7	R, U, An, C	F, P, M	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

### Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	<b>PS O8</b>	PO 1	PO 2	<b>PO</b> 3	PO4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
<b>CO 3</b>	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 4	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1



### **Correlation Levels:**

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	ternal Exam Assignment Project Eva		End Semester Examinations
CO 1				$\checkmark$
CO 2	~	<b>&gt;</b>		$\checkmark$
CO 3	✓	✓		✓
CO 4	<i>✓</i>	✓		✓
CO 5	1	✓		✓
CO 6	1	1		1



Discipline	MATHEMATICS							
Course Code	MIUK7DSEMAT403.1							
Course Title	Advanced Topics in	Graph The	ory					
Type of Course	DSE							
Semester	VII							
Academic Level	400-449							
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total Hours/Week			
		per week	per week	per week	Hours/ week			
	4	4 hours	-	-	4			
Pre-requisites	Basic of conce	epts in Graph	Theory					
	<ul> <li>Graw Hill, 2006</li> <li>References</li> <li>1. J Vasudev C., Publication, 200</li> <li>2. West D. B., <i>Intr</i> 2001.</li> <li>3. Bondy and Mur Macmillan Press</li> <li>4. Chartrand G. a Prindle, Weber</li> </ul>	<ul> <li>Text:</li> <li>Gary Chartrand and Ping Zhang, <i>Introduction to Graph Theory</i>, Tata Mc Graw Hill, 2006</li> <li>References</li> <li>1. J Vasudev C., <i>Graph Theory Applications</i>, New Age India Publication, 2006.</li> <li>2. West D. B., <i>Introduction to Graph Theory</i>, Pearson Education Inc, 2001.</li> <li>3. Bondy and Murthy, <i>Graph Theory with Applications</i>, The Macmillan Press Limited, 1976.</li> <li>4. Chartrand G. and L. Lesniak, <i>Graphs and Diagraphs</i>, Prindle, Weber and Schmidt, Boston, 1986.</li> <li>5. Garey M. R., D. S. Johnson, <i>Computers and Intractability</i>,</li> </ul>						



	Francisco, 1979.
	6. Harary F., Graph Theory, Addison - Wesley, 1969.
	7. K. R. Parthasarathy, <i>Basic Graph Theory</i> , Tata Mc Graw-Hill, New Delhi, 1994.
Course Summary	This course is intended to prepare the students for more advanced level leading to research in Graph Theory. By the end of the course students develop a strong foundation in Graph Theory and gain the skills necessary to analyze and solve graph-related problems across different disciplines.

Module	Unit	Content	Hrs				
		Solvability					
Ι	Ι	Definition of isomorphism, Isomorphism as a	15				
		relation, Graphs and groups, Reconstruction and					
		solvability.					
		opics to be discussed in this module can be found in Sections 3.	1, 3.2,				
	3.3, 3.4 of the text .						
		Connectivity					
II	Π	Cut-vertices, Blocks, Connectivity, Eulerian	15				
		graphs, Hamilton graphs, Hamilton walksand					
		numbers.					
		opics to be discussed in this module can be found in Sections 5.	1, 5.2,				
	5.3, 6	.1, 6.2 and 6.3 <i>of</i> <b>the text</b>					
		Matchings and Factorization and Graph Coloring					
III	III	Strong diagraphs, Tournaments, matching, Factorization,	15				
		The Four-color problem, Vertex coloring, Four Color					
		theorem, EdgeColoring, Ramsey number of graphs, Turan's					
		Theorem.	1 10 2				
		<b>opics to be discussed in this module can be found in</b> Sections 10 11.1 and 11.2 and Sections 7.1, 7.2, 8.1 and 8.2 <i>of</i> <b>the text</b> .	0.1, 10.2,				
	10.5,	-					
		Distance in Graphs					

IV	IV	The centre of a graph, Distant vertices, locating numbers,	15			
		Detour anddirected distance. (Sections).				
	The topics to be discussed in this module can be found in 12.1, 12.2, 12.3,					
	12.4, 12.5 and 12.6 of <b>the text.</b>					

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
<u> </u>			
CO-1	Describe the basic concepts of graphs, directed	R, U, Ap, E	PSO-1,2,3,
	graphs andweighted graphs.		4, 7, 8
CO-2	Model Isomorphism of graphs and study Eulerian	R, U, Ap, E	PSO-1,2,3,
	andHamiltonian graphs.		4, 7, 8
CO-3	Interpret the problems of Matchings and	R, U, Ap, E	PSO-1,2,3,
	Factorization.	-	4,5, 7, 8
CO-4	Summarize the vertex and edge coloring of graphs.	R, U, Ap, E	PSO-1,2,
		-	3, 4, 7, 8
CO-5	Apply the knowledge of graphs to solve the real-life	R, U, Ap, E	PSO-
	problems.	_	1,2,3,4,5,7,
			8
CO-6	Develop problem-solving skills by tackling a variety of	R, U, Ap, E	PSO-1,2,
	graph-related problems, and learn to apply critical thinking and creativity in finding solutions.	_	3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

*Note: 1 or 2 COs/module* 

## Advanced Topics in Graph Theory: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	CO	PO/ PSO	Cogni tive Level	Know ledge Categ ory	Lect ure (L)/ Tuto rial (T)	Pra ctic al (P)
CO1	Describe the basic concepts of graphs, directed graphs andweighted graphs.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Model Isomorphism of graphs and study Eulerian andHamiltonian graphs.	PO- 1,2, 4,5, 6,	R, U, Ap, E	F,P, M	L	

		7				
CO3	Interpret the problems of Matchings and Factorization.and concerning integration.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L	
CO 4	Summarize the vertex and edge coloring of graphs.	PO- 1,2, 4,5,6,	R, U, Ap, C	F, P, M	L	
CO 5	Apply the knowledge of graphs to solve the real-lifeproblems.	PO- 1,2, 4,5,6,7	R, U, An, C	Р, М	L	
CO 6	Develop problem-solving skills by tackling a variety of graph-related problems, and learn to apply critical thinking and creativity in finding solutions.	PO-,2, 4,5,6,7	R, U, An, C	F, P, M	L	

## F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

## Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS 05	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	3	3	3	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	3	3	3	-	-	2	1	3	3	-	1	3	3	1
<b>CO 3</b>	3	3	3	3	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	3	3	3	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	3	3	3	2		2	1	3	3	-	1	3	3	1
CO 6	3	3	3	3	-	-	2	1	3	3	-	1	3	3	1

## **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High



#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

### Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	1		$\checkmark$
CO 2	1	✓		✓
CO 3	1	✓		✓
CO 4	<i>✓</i>	✓		✓
CO 5	1	<b>\</b>		$\checkmark$
CO 6	1	1		1



Discipline	MATHEMATICS							
Course Code	MIUK7DSEMAT404	MIUK7DSEMAT404.1						
Course Title	Ordinary Differenti	Ordinary Differential Equations						
Type of Course	DSE							
Semester	VIII							
Academic Level	400-499	400-499						
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	4 hours	-	-	4			
Pre-requisites	• Differential E	quations						
	<ul> <li>Application</li> <li>3rd edition</li> <li>References</li> <li>1. E. A. Coddington</li> <li>Differential Equation</li> <li>2. W. Walter, Ordina</li> <li>1996.</li> <li>3. P. Blanchard, R Equations, Brook</li> <li>4. G. F. Simmons, I</li> </ul>	<ul> <li>George F. Simmons, Differential Equations with Applications and Historical Notes, 3rd edition,CRC Press, Taylor and Francis Group, 2016.</li> <li>References</li> <li>1. E. A. Coddington &amp; N. Levinson, Theory of Ordinary Differential Equations, Tata-McGraw Hill,2012.</li> <li>2. W. Walter, Ordinary Differential Equations, Springer, 6th edition,</li> </ul>						



5. Dennis G. Zill, A First Course in Differential Equations
with Modeling Applications, Brooks/Cole, 6th edition, 1997.
6. I. Sneddon, <i>Elements of Partial Differential Equations</i> , Dover Publications, Inc., 2006.
7. Erwin Kreyszig, Advanced Engineering Mathematics, 9th
edition, John Wiley and Sons, 2011.
8. D. Greenspan, Introduction to Partial differential Equations, TMH Edition, 1961.
9. K. Sankara Rao, Introduction to Partial Differential
Equations, 3 rd edition, PHI Learning, 2011.
The course provides students with a solid foundation in the theory and
techniques of ordinary differential equations, preparing them to analyze and solve a wide range of differential equations encountered in science, engineering, and other fields.

Module	Unit	Content	Hrs			
		Existence and Uniqueness of Solutions				
I	Ι	The method of successive approximations, Picard's Theorem, systems. The second order linear equation, Oscillations and Sturm Separation theorem, Sturm Comparison theorem.	15			
	<b>The topics to be discussed in this module can be found in</b> Chapter 13: Sections 69, 70, 71; Chapter 4: Sections 24, 25 <i>of</i> <b>the text.</b>					
		Power Series solutions				
Π	Π	A review of power series, series solutions of first order equations, second order linear equations, ordinary points, regular singular points, two convergence proofs. Gauss's Hypergeometric Equation, The Point at Infinity.	15			
	<b>The topics to be discussed in this module can be found in</b> Chapter 5: Sections 26, 27,28, 29, 30, 31, 32 and Appendix A <i>of</i> the text.					

		Special functions	
Ш	III	Legendre Polynomials and their properties, Bessel Functions, the Gamma Function, Properties of Bessel Functions, Additional Properties of Bessel Functions.	15
		<b>opics to be discussed in this module can be found in</b> Chapter 8: S 5, 46, 47 and Appendix C <i>of</i> <b>the text.</b>	Sections
		System of first order equations, Non-linear equations	
IV	IV	General remarks on systems, linear systems, Homogenous linear systems with constant coefficients, non-linear systems. Volterra's Prey-Predator equations. Autonomous systems. The Phase Plane and Its Phenomena, Types of Critical Points. Stability, Critical points and Stability for Linear Systems, Simple critical points of non-linear systems.	15
	The t	opics to be discussed in this module can be found in Chapter 10:	Section
	54, 53	5, 56, 57and Chapter 16: Sections 58, 59, 60, 62 of the text.	

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Apply Picard's Theorem to check the	R, U, Ap, E	PSO-1,2,3,
	existence of solution of differential equations.		4, 7, 8
CO-2	Classify the singular points of second order	R, U, Ap, E	PSO-1,2,3,
	differential equations with variable coefficients.		4, 7, 8
CO-3	Write power series solutions of several important	R, U, Ap, E	PSO-1,2,3,
	classes of ordinary differential equations including		4,5, 7, 8
	Bessel's, Legendre, Gauss's hypergeometric		
	differential equations.		

		_

CO-4	Analyse the stability of linear and non-linear system of differential equations.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Summarize the oscillation properties of differential equations	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8
CO-6	Enhance critical thinking skills by analyzing the behavior of differential equation solutions, identifying patterns, and making connections between theoretical concepts and real-world applications.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

## Ordinary differential Equations: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)
CO1	Apply Picard's Theorem to check the existence of solution of differential equations.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L
CO 2	Classify the singular points of second order differential equations with variable coefficients.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L
CO3	Write power series solutions of several important classes of ordinary differential equations including Bessel's, Legendre, Gauss's hypergeometric differential equations.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L
CO 4	Analyse the stability of linear and non-linear system of differential equations.	PO-1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L
CO 5	Summarize the oscillation properties of differential equations	PO-1,2, 4,5, 6, 7	R, U, An, C	P, M	L
CO 6	Enhance critical thinking skills by analyzing the behavior of differential equation solutions, identifying patterns, and making connections between theoretical concepts and real-world applications.		R, U, An, C	F, P, M	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive



	PS	PO	PO	PO	PO4	PO	PO	PO							
	01	02	03	04	05	06	07	08	1	2	3		5	6	7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1

### Mapping of COs with PSOs and POs :

#### **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

## Mapping of COs to Assessment Rubrics :

	Internal Exam Assignment Project Eval		Project Evaluation	End Semester Examinations
CO 1	✓	1		✓
CO 2	✓	✓		$\checkmark$
CO 3	1	✓		$\checkmark$
CO 4	1	✓		✓
CO 5	1	✓		1
CO 6	✓	✓		1



Discipline	MATHEMATICS	MATHEMATICS							
Course Code	MIUK7DSEMAT403	MIUK7DSEMAT405.1							
Course Title	Abstract Algebra – Field Theory								
Type of Course	DSE								
Semester	VII								
Academic Level	400-499								
<b>Course Details</b>	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	4 hours	-	-	4				
Pre-requisites	<ul> <li>Group Theory <ul> <li>Ring Theory</li> <li>Basic idea of Fields</li> </ul> </li> <li>Text: <ul> <li>David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd Edition, Wiley Publications, 2003.</li> </ul> </li> <li>References <ul> <li>Joseph A. Gallian, Contemporary Abstract algebra, 8th Edition, Brooks/Cole, Cengage Learning, 2010.</li> <li>John B. Fraleigh, A first course in abstract algebra, 7th edition, Pearson Education Inc, 2003.</li> <li>T. W. Hungerford, Algebra, Springer, 2005.</li> </ul> </li> </ul>								
Course Summary	<ul> <li>4. I. N. Heirstein, <i>Top</i></li> <li>5. M. Artin, Algebra,</li> <li>This course is meant mastery of group, r theories of these top concepts in various b</li> </ul>	Prentice Hall t basically to ing, and fie ics will help	<ul> <li>help the st</li> <li>help the st</li> <li>he students</li> </ul>	udents to hav A solid fou	e an advanced ndation in the				

Module	Unit	Content	Hrs
		Group Actions	
Ι	Ι	Group actions and permutation representations, Groups acting on	15
		themselves by left multiplication - Cayley's Theorem, Groups acting on themselves by conjugation - The Class Equation, Automorphisms, The Sylow Theorems, The simplicity of An.	
		opics to be discussed in this module can be found in Sections 4.1 ext book	to 4.6 of
		Direct and Semi direct products and Abelian groups	
Π	Π	Direct Products, the fundamental theorem of finitely generated abelian groups, Table of groups of small order, Recognizing direct products, Semidirect products, p-groups, nilpotent groups and solvable groups.	15
		<b>opics to be discussed in this module can be found in</b> Sections 5.1 .1 of the Text book.	to 5.5
		Field Theory	
III	III	Basic theory of field extensions, Algebraic extensions, Classical straight edge and compass constructions, Splitting fields and algebraic closures, Separable and inseparable extensions, Cyclotomic polynomials and extensions.	15
		opics to be discussed in this module can be found in Sections 13.7 Text book	1 to 13.6
		Galois Theory	
IV	IV	Basic definitions, The fundamental theorem of Galois Theory, Finite fields, Composite extensions and simple extensions, Cyclotomic extensions and abelian extensions over Q, Galois groups of polynomials, Solvable and radical extensions, insolvability of the quintic, Computation of Galois groups over Q, Transcendental extensions, inseparable extensions, infinite Galois groups. (Theorem 14 may be discussed without proof)	15
		opics to be discussed in this module can be found in Sections 14.3 Text book	l to 14.9

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the concept of group actions culminating in Sylow's Theorems and the simplicity of An.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-2	Explain the direct and semi direct product of groups and the fundamental theorem of finitely generated belian groups with the help of which being able to classify groups of small orders.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-3	Express the basics of field extensions and splitting fields.transformation in connection with solution of linear equations.	R, U, Ap, E	PSO-1,2,3, 4,5, 7, 8
CO-4	Apply the fundamental theorem of Galois Theory with the help of which being able to prove the insolvability of the quintic and to form Galois groups.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Summarize the basics of module theory and tensor products of modules and modules over Principal Ideal Domains.	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

## Advanced Linear Algebra: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L) Tutorial (T)	Practical (P)
CO1	Describe the concept of group actions culminating in Sylow's Theorems and the simplicity of An.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Explain the direct and semi direct product of groups and the fundamental theorem of finitely generated belian groups with the help of which being able to classify groups of small orders.	1,2,	R, U, Ap, E	F,P, M	L	
CO3	Express the basics of field	PO-	R, U, Ap,	F, C, P	L	

	extensions and splitting fields. transformation in connection with solution of linear equations.	1,2, 4,5, 6, 7	Е			
CO 4	Apply the fundamental theorem of Galois Theory with the help of which being able to prove the insolvability of the quintic and to form Galois groups.	PO- 1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L	
CO 5	Summarize the basics of module theory and tensor products of modules and modules over Principal Ideal Domains.	PO- 1,2, 4,5, 6, 7	R, U, An, C	Р, М	L	

# F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

## Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	PS O8	PO 1	PO 2	PO 3	<b>PO</b> 4	PO 5	PO 6	<b>PO</b> 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1

**Correlation Levels:** 

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam



## Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	<i>✓</i>	1		✓
CO 2	<i>✓</i>	1		✓
CO 3	<i>✓</i>	1		✓
CO 4	1	1		✓
CO 5	1	1		✓



Discipline	MATHEMATICS									
Course Code	MIUK7DSEMAT406	IIUK7DSEMAT406.1								
Course Title	Measure Theory and	Ieasure Theory and Integration								
Type of Course	DSE	SE								
Semester	VII	II v								
Academic Level	400-499									
Course Details	rse Details Credit Lecture per week Practical Hour									
	4	4 hours	-	-	4					
Pre-requisites	<ul> <li>Sequence and</li> <li>Limit of func</li> <li>Sequence and</li> <li>Riemann Integ</li> </ul>	tions, Contin series of fun	uity and unif	orm continuit	y of functions,					
	<ul> <li>Text:</li> <li>G de Barra, <i>I</i> International 1</li> <li>References</li> <li>M. Thamban N Publishers, 2019</li> <li>H. L. Roydon, <i>F</i></li> <li>W. Rudin, <i>Prince</i></li> <li>W. Rudin, <i>Prince</i></li> <li>F. M. Stein <i>E</i> <i>Theory</i>, <i>Integr</i></li> <li>University Press</li> <li>G. B. Folland <i>Their Applicatio</i></li> </ul>	Publishers, I air, <i>Measur</i> 9. Real Analysi ciples of Ma leasure The & R. Shak ration, and s, 2005. , Real and	New Delhi, 1 e and Integr s, Third Edit thematical A ory, Springe archi, Real d Hilbert alysis:Moder	981. cation, A first ion, Mac – M. nalysis, 3 rd E r, 1950. analysis: M Spaces, Pr rn Technique	t course, CRC Iillan, 1988. dition, 1964. <i>Measure</i> inceton es and					

Course Summary	This course delves into foundational concepts essential for understanding modern analysis and probability theory. It explores rigorous mathematical frameworks for measuring sets and functions, paving the way for advanced studies in integration theory, functional analysis, and probability.

Module	Unit	Content	Hrs								
		Lebesgue Outer Measure									
I	Ι	Measurable sets, Regularity, Measurable functions, Borel and Lebesgue Measurability.	15								
	<b>The topics to be discussed in this module can be found in</b> Chapter 2: Sections 1 - 5 of the text.										
		Integration of Non-negative functions									
П	Π	The General Integral, Integration of Series, Riemann and Lebesgue Integrals, The Four Derivatives, Lebesgue's Differentiation Theorem, Differentiation and Integration.	15								
		<b>opics to be discussed in this module can be found in</b> Chapter 3: S Chapter 4: Sections 1, 4– statements only and 5 <i>of</i> <b>the text.</b>	Sections 1								
		Abstract Measure Spaces									
Ш	III	Measures and Outer Measures, Extension of a measure, Uniqueness of the Extension, Completion of the Measure, Measure spaces, Integration with respect to a Measure. Convex Functions, Jensen's Inequality, The Inequalities of Holder and Minkowski, Completeness of $L^p(\mu)$ .	15								
		The topics to be discussed in this module can be found in Chapter 5: Sections $1 - 6$ and Chapter 6: Sections $1 - 5$ of the text.									
		Convergence in Measure									
IV	IV	Signed Measures and the Hahn Decomposition, The	15								

	<b>copics to be discussed in this module can be found in</b> Chapter 7: S Chapter 8: Sections 1 - 4) of <b>the text</b> .	ection1
	Jordan Decomposition, The Radon Nikodym Theorem, Some Applications of the Radon Nikodym Theorem.	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Give Examples how Lebesgue measure on $\mathbb{R}$ is defined.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-2	Extend how measures may be used to construct integrals.	R, U, Ap, E	PSO-1,2,3, 4, 7, 8
CO-3	Relate the basic convergence theorems for the Lebesgue integral.	R, U, Ap, E	PSO-1,2,3, 4,5, 7, 8
CO-4	Explain the concept of Spaces and its properties	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Apply the concept of measure to signed measure and interpret a selection of theorems concerning signed measure and Radon Nikodym derivative.	R, U, Ap, E	PSO- 1,2,3,4,5,7, 8
CO-6	Apply measure-theoretic techniques to solve problems in analysis, probability theory, and other mathematical disciplines.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

## Measure Theory: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO1	Give Examples how Lebesgue measure on $\mathbb{R}$ is defined.	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L	
CO 2	Extend how measures may be used to construct integrals	PO-1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L	

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO3	Relate the basic	PO-1,2,	R, U, Ap,	F, C, P	L	
	convergence theorems	4,5, 6, 7	E			
	for the Lebesgue					
СО	integral. Explain the concept of	PO-1,2,	R, U, Ap,	F, P, M	L	
4	Spaces and its	4,5, 6, 7	С	1,1,1,1	L	
	properties	, , ,				
CO	Apply the concept of		R, U, An,	Р, М	L	
5	measure to signed	4,5, 6, 7	C			
	measure and interpret a					
	selection of theorems concerning signed					
	measure and Radon					
	Nikodym derivative.					
CO	Apply measure-theoretic	PO-1,2,	R, U, An,	F, P, M	L	
6	techniques to solve	4,5, 6, 7	С			
	problems in analysis,					
	probability theory, and other mathematical					
	disciplines					
	uscipilitos					

## F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

# Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS 03	PS O4	PS 05	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 3	3	2	3	2	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1
CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1

## **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High



#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

### Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO	✓	1		✓
CO	<i>✓</i>	1		<ul> <li>✓</li> </ul>
2 CO	<i>✓</i>	1		<ul> <li>✓</li> </ul>
3 CO	1	1		<ul> <li>✓</li> </ul>
4 CO	1	1		✓
5 CO	1	1		✓
6				



Discipline	MATHEMATIC	CS										
Course Code	MIUK7DSEMAT	[407.1										
Course Title	Partial Different	ial Equatio	ns									
Type of Course	DSE											
Semester	VII											
Academic Level	400-499	100-499										
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week							
	4	4 hours	-	-	4							
Pre- requisites	• Differenti	al Equations										
	<ul> <li>Text: Yehuda Pinchover and Jacob Rubinstein, An Introduction to Partial DifferentialEquations, Cambridge University Press, 2005.</li> <li>References</li> <li>1. I. Sneddon, Elements of Partial Differential Equations, Dove Publications, Inc., 2006.</li> <li>2. D. Greenspan, Introduction to Partial Differential Equations, TMH Edition, 1961.</li> <li>3. Erwin Kreyszig, Advanced Engineering Mathematic</li> </ul>											

	<ul> <li>4. K. S. Rao, Introduction to Partial Differential Equations, PHI Learning Pvt. Ltd.,2011.</li> <li>5. K. S. Rao, Introduction to Partial Differential Equations, PHI Learning Pvt. Ltd.,2011.</li> </ul>
Course Summary	The course provides students with a solid foundation in the theory and techniques of partial differential equations, preparing them to analyze and solve a wide range of differential equations encountered in science, engineering, and other fields.

Module	Unit	Content	Hrs							
		First Order equations								
I	I	Introduction, quasi linear equations, the method of characteristics, examples of the characteristic method, the existence and uniqueness theorem, the Lagrange method, Conservation laws and shock waves, the eikonal equation, general nonlinear equations.	15							
		he topics to be discussed in this module can be found in hapter 2: Sections $2.1 - 2.9$ of the text.								
	Seco	ond Order linear equations in two independent variables								
П	Π	Introduction, classification, canonical form of hyperbolic equations, canonical form of parabolic equations, canonical form of elliptic equations, Introduction to one dimensional wave equation, canonical form and general solution, the Cauchy problem and d'Alembert's formula.	15							

		topics to be discussed in this module can be found in										
	the te	ter 3: Sections 3.1- 3.5; Chapter 4: Sections 4.1 - 4.3 of ext.										
		Method of separation of variables										
ΠΙ	III	Domain of dependence and region of influence, the Cauchy problem for the nonhomogeneous wave equation, introduction to the method of separation of variables, Heat equation: homogeneous boundary condition, separation of variables for the wave equation, separation of variables for the nonhomogeneous equations	15									
		variables for the nonhomogeneous equations. topics to be discussed in this module can be found in Chapter ons 4.4, 4.5, Chapter 5: Sections $5.1 - 5.4$ of the text.										
		Sturm – Liouville problems and eigen function expansions, Equations in high dimensions										
IV	IV	Introduction, the Sturm- Liouville problem, inner product spaces and orthonormal systems, basic properties of Sturm- Liouville eigen functions and eigenvalues, nonhomogeneous equations, nonhomogeneousboundary conditions. Introduction, first order equations, classification of second order equations, the wave equation in $R^2$ and $R^3$ , the eigenvalue problem for the Laplace equation, separation of variables for the heat equation, separation of variables for the wave equation, separation of variables for the Laplace equation, separation of variables for the Laplace equation.	15									
		topics to be discussed in this module can be found in Chapter ons $6.1 - 6.6$ and Chapter 9: Sections $9.1 - 9.8$ of the text.	ter 6:									

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse d
CO-1	Employ the method of characteristics, and applyexistence and uniqueness theorem.	R, U, Ap, E	PSO- 1,2,3, 4, 7, 8
CO-2	Analyze different types of second order partial differential equations along with their canonical forms	R, U, Ap, E	PSO- 1,2,3, 4, 7, 8
CO-3	Solve a PDE using the method of separation of variables.	R, U, Ap, E	PSO- 1,2,3, 4,5, 7, 8
CO-4	Relate the beauty of Inner product spaces.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8
CO-5	Classify the second order partial differential equations and use the method of separation of variables.	R, U, Ap, E	PSO- 1,2,3,4,5, 7, 8
CO-6	Interpret the physics and hence the applications behind all the standard second order partial differential equations.	R, U, Ap, E	PSO-1,2, 3, 4, 7, 8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

## Partial Differential Equations : Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO	СО	PO/	Cogni	Knowl	Lect	Pra
No.		PSO	tive	edge	ure	ctic
			Level	Catego	(L)/	al
				ry	Tut	<b>(P</b> )
					oria	
					<b>l</b> ( <b>T</b> )	

Department of Mathematics, Mar Ivanios College(Autonomous), Trivandrum

CO1	Employ the method of characteristics, and applyexistence and uniqueness theorem.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C	L
CO 2	Analyze different types of second differential equations along with their canonical forms.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F,P, M	L
CO3	Solve a PDE using the method of separation of variables.	PO- 1,2, 4,5, 6, 7	R, U, Ap, E	F, C, P	L
CO 4	Relate the beauty of Inner product spaces	PO- 1,2, 4,5, 6, 7	R, U, Ap, C	F, P, M	L
CO 5	Classify the second order partial differential equations and use the method of separation of variables.	PO- 1,2, 4,5, 6, 7	R, U, An, C	Р, М	L
CO 6	Interpret the physics and hence the applications behind all the standard second order partial differential equations.	PO- 1,2, 4,5, 6, 7	R, U, An, C	F, P, M	L

## F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06	PS O7	PS 08	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7
CO 1	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 2	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
<b>CO 3</b>	3	2	3	2	2		2	1	3	3	-	1	3	3	1
<b>CO 4</b>	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1
CO 5	3	2	3	2	2		2	1	3	3	-	1	3	3	1

CO 6	3	2	3	2	-	-	2	1	3	3	-	1	3	3	1	1

#### **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

## Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	<ul> <li>✓</li> </ul>	1		<ul> <li>✓</li> </ul>
CO 2	1	1		$\checkmark$
CO 3	1	1		✓
CO 4	1	✓		✓
CO 5	1	✓		1
CO 6	1	✓		1

## MAR IVANIOS COLLEGE (AUTONOMOUS), THIRUVANANTHAPURAM BOARD OF STUDIES IN MATHEMATICS AND STATISTICS 2023 – 2026

No	Name	Designation
1.	Mr. Sumesh S S	Assistant Professor and Head, Dept. of
	(Chairman)	Mathematics, Mar Ivanios College
2.	Dr. Manoj Changat	Professor,
	(University Nominee)	Department of Futures Studies,
		University of Kerala
3.	Fr Dr Gigi Thomas	Dean,
		Mar Ivanios College
4.	Ms. Tiji Thomas	Faculty member of the Department
5.	Dr. Jill K Mathew	Faculty member of the Department
6.	Dr. Linda J. P.	Faculty member of the Department
7.	Dr. Neeradha C K	Faculty member of the Department
8.	Dr. Anusha Edwin	Faculty member of the Department
9.	Dr. Raju K. George	Outstanding Professor of Mathematics,
		Dean (R&D, IPR),
		IIST Trivandrum
10.		Professor,
	Dr. Subrahamanian Moosath K. S.	Department of Mathematics,
		IIST Trivandrum
11.	Dr. Viji Z. Thomas	Associate Professor,
		Department of Mathematics,
		IISER Trivandrum
12.	Mr. Deepak Negi	Head,
		Applied Mathematics Division,
12	Ma Juathi Damasurany	VSSC, Thiruvananthapuram
13.	Ms. Jyothi Ramaswamy	Tata Consultancy Services (TCS),
		Technopark Campus, Karyavattom, Trivandrum
14.	Ms. Indu L	Assistant Professor,
14.	Wis. Indu L	Department of Mathematics,
		College of Engineering Trivandrum,
		Thiruvananthapuram
15.	Dr. C. Satheesh Kumar	Professor of Statistics,
101		Director School of Physical and
		Mathematical Sciences,
		University of Kerala



16.	Dr. A. Riyaz	Assistant Professor,
		Department of Statistics,
		University of Kerala
17.	Dr. Subha R. Nair	Associate Professor,
		Department of Statistics,
		HHMSPB NSS College for Women,
		Thiruvananthapuram